
SQL Injections

João Paulo Barraca
jpbarraca@ua.pt

Current Web Environment

• Current “web pages” are really web applications
– Front end which may run in browser
– Server provides execution environment
– Backend which provides services
– Database for persistent storage

• Interfaces connect the different subsystems
– E.g. HTTP, REST, WebSocket, SQL, etc..

• Multiple technologies and languages used
– E.g. Javascript, PHP, HTML, CSS

Current Web Environment

• Each subsystem may be vulnerable to attacks
– Entire application may be compromised if single

breach is found

• SQL Injections are just one case
– Focus in applications using SQL servers
– There are many other attacks

What?

• Conjunction of several things:
– Specially crafted input
– Lack of sanity checks in code

• Injection of an SQL statement into another

SQL statement, changing its purpose

• Most frequent vector: Attacker injects special

SQL statement into text field

SQL Injection

Typical validation query:

SELECT user FROM users WHERE user=‘$login’
AND password=‘$password’

For login=admin and password=1234, query becomes:

SELECT user FROM users WHERE user=‘admin’
AND password=‘1234’

Form provides two values: login and password

SQL Injection: Detection

Form provides two values: login and password

What if password is a single quote? ‘
For login=admin and password=‘, query becomes:

SELECT user FROM users WHERE user=‘admin’
AND password=‘’’

SQL Injection: Detection

SQL Injection: Detection

http://assets.devx.com/articlefigs/17059.jpg

SQL Injection: Bypass Simple Password

• Form data is used to create an SQL statement
– Without validation!
– SQL code in form can be injected

• What if… password is ‘ or ‘1’=‘1

SELECT user FROM users WHERE user=‘admin’

AND password=‘’ or ’1’=‘1’

• SQL Statement is valid and always returns 1 row if the user
exists. It is also possible to find username.

SQL Injection: Bypass Simple Password

SQL Injection: Bypass Complex
Passwords

• SQL can store passwords in a ciphered format
– Uses the PASSWORD function
– Password stored in database cannot be obtained

• Typical validation query:
– SELECT user FROM users WHERE user=‘$login’ AND

password=PASSWORD(‘$password’)

• For login=admin and password=‘) OR (‘1’=‘1, query becomes:
– SELECT user FROM users WHERE user=‘admin’ AND

password=PASSWORD(‘‘) OR (‘1’=‘1’)

Guess Password

• More complex statement can be included in form fields.
• Frequently, the only requirement is that they start and end

with single quote (‘).

• Does the password starts with an ‘a’?

‘ OR EXISTS(SELECT user FROM users WHERE

user=‘admin’ and password LIKE ‘a%”) AND ‘’ =‘

Guess Password

SELECT user FROM users WHERE user=‘admin’

AND password=‘‘ OR EXISTS(SELECT user FROM users WHERE

user=‘admin’ and password LIKE ‘a%”) AND ‘’ =‘’

Guess Password

SELECT user FROM users WHERE user=‘admin’

AND password=‘‘ OR EXISTS(SELECT user FROM users WHERE

user=‘admin’ and password LIKE ‘p%”) AND ‘’ =‘’

• Then we could try: pa% or pa%a%, etc..

Other possibilities

• Find table name:
– Is there a users table in the current db?: ' OR EXISTS(SELECT

* FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA='test' AND TABLE_NAME=’users') AND ''=’

– Is there any table starting by “p” in any db? :' OR (SELECT
COUNT(*) FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA LIKE ‘p%')>1 AND ''='

• Find database name
– Starts by t?: ' OR EXISTS(SELECT 1 FROM users WHERE

database() LIKE ’t%') AND ''=‘

• Find columns, get columns by index, etc…

SQL Injection: Terminate Query

• Two characters are particularly important
– ; Terminates current query

• Allows multiple queries in same request
– -- terminates processing of all queries.

• Ignores syntax errors which may appear

SELECT user FROM users WHERE user=‘admin’ AND

password=‘

’; DROP TABLE user; --’

Query 1

Query 2 Ignored after --

Mitigation: Sanitize Input Data

• Sanitize form input data
– Filter out dangerous characters

• Username can only have letters
• Passwords can only have letters and numbers
• Emails must comply with RFC 2822

– Escape dangerous characters
• Avoid this.

• Browser using Javascript
– Can be bypassed doing direct queries or using tampering proxies (e.g.

WebScarab).
– Automated tools such as WebCruiser can easily detect and bypass

such methods

• Server
– Higher load in server
– Much more effective!

Mitigation: Sanitize Input Data

• Sanitizing input data based on quotes is insufficient!
• If form is numeric, no quote is required.

– E.g. PIN validation

SELECT user FROM users WHERE user=‘admin’ AND

pin=12 or 1=1

• Validation must take in consideration actual data. Sanitize
as much as possible

Mitigation: Sanitize Input Data

• Escaping doesn’t really help in all cases
– E.g. typical escape is ‘ -> ‘’

• Providing ‘ OR ‘1’=‘1 results in:

SELECT user FROM users WHERE user=‘admin’ AND password=‘‘’ OR

‘’1’’=‘‘1’

• As double quote is ignored by SQL, no harm done.
• What about \’; DROP TABLE users; --

– \’ is expanded to \’’, ‘\’’ is a valid string with just one character (the single
quote). Table is dropped!

• MySQL provides own sanitization methods: mysql_real_escape_string()

Mitigation: Prepared Queries

• Instead of building query string, let SQL

libraries compile the query.
– Separation between Query and Parameters

• Three steps required:
– Preparation
– Bind parameters
– Execution

Mitigation: Prepared Queries

• Query Preparation:
– $s = mysql->prepare(“SELECT user FROM users WHERE

user= ? AND pin= ?”)

• Parameter binding:
– $s->bind_param(“s”,$login);
– $s->bind_param(“i”,$password);

• Query execution
– $s->execute();

Mitigation: Others

• Limit data permissions according to user needs
– Do not grant DROP, or Write methods for read only

application

• Use stored procedures

• Isolate servers to reduce compromise of neighbor

hosts

• Configure error reporting appropriately
– Detailed error reporting for developers
– Limited error reporting for users

