MIECT: Security 2015-16

Practical Exercise:
Digital Signatures with the Portuguese Citizen Card

September 7, 2015 Due date: no date

Changelog

e v1.0 - Initial Version.

Introduction

In order to elaborate this laboratory guide it is required to install the Java
Development Environment (JDK). This is provided by openjdk-6-jdk or
openjdk-7-jdk. If you use the virtual machine provided this should be al-
ready installed.

For practicing with digital signatures we will make use of the capabilities
of the Portuguese Citizen Card (Cartao de Cidadao, CC). The middleware
required to use the CC is available here.

1 Relevant CC middleware

The CC middleware that is relevant for this work is formed by two main
components:

e A PKCS #11 library.

In Linux systems this file is has the basename 1ibpteidpkcsil and
is located in /usr/local/lib. There are both static (extension .a)
and dynamic (extension .so) versions of this library. In Windows
systems this file is has the name pteidpkcsi1.d11 and is located in
the subdirectory System32 of the Windows root directory (usually
C:\Windows).

http://www.cartaodecidadao.pt/index.php%3Foption=com_content&task=category§ionid=1&id=10&Itemid=26&lang=en.html
http://www.cartaodecidadao.pt/index.php.html
http://www.cartaodecidadao.pt/index.php%3Foption=com_content&task=view&id=102&Itemid=44&lang=pt.html

e A set of public key certificates that create a certification chain from
the certificates contained in a CC and the root certification author-
ity (GTE CyberTrust Global Root or Baltimore CyberTrust Global
Root).

In Linux these files are stored in /usr/local/bin/eidstore/certs.
In Windows system these files are stored in eidstore\certs under
the directory where all CC middleware files are stored

(e.g. C:\Programa Files\Cart&o de Cidad&o).

2 Exploitation of a PKCS #11 device from Java

There are basically two ways to explore a PKCS #11 device from a Java
program:

1. Using the native Sun PKCS #11 provider functionalities of Java. We
will explore this one in this guide.

2. Using a PKCS #11 wrapper package (e.g. the TAIK wrapper) .

2.1 PKCS #11 provider

A PKCS #11 provider a a piece of software that provides cryptographic
functionalities through a PKCS #11 API. This is a standard API that was
designed to normalize the access to cryptographic functionalities provided
by hardware devices (or tokens) to applications. For each device one should
have a PKCS #11 library with a subset of the relevant API functions for the
device.

The definition of a PKCS #11 provider follows the general rules of the defi-
nition of another security provider: it has to be added to the list of security
providers recognized by the JVM. This can be done statically, through JVM
configuration files, or programatically by an application. To make it pro-
gramatically one has to associate a configuration file for the provider to the
ones already used by providers of the same type. In our case, since we want
to explore a PKCS #11 provider, if CitizenCard.cfg is the name of the
configuration file for exploring a CC, we would do:

String f = "CitizenCard.cfg";
Provider p = new sun.security.pkcsll.SunPKCS11(£);
Security.addProvider(p);

The configuration file has to contain enough information to allow the Sun
PKCS #11 provider to explore another provider using the same API. This
information is provided in textual key = value pairs, where the keys name

https://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/PKCS_11_Wrapper

and library are mandatory (see section 2.2 of this Web page for other keys
that can be used).

The configuration presented below associates the name PTeID (an arbitrary
name) to the path of the CC’s PKCS #11 shared library path. The name is
useful to refer to this particular PKCS #11 provider (there may be many).
The library path will loaded and used by the JVM to access the CC through
a PKCS #11 APL

name = PTelID
library = /usr/local/lib/libpteidpkcsil.so

Since cryptographic operations require some kind of key, in Java a PKCS #11
provider is first of all viewed as a KeyStore, i.e., as a piece of software
capable of providing cryptographic keys. However, this is a special case of
KeyStore where its contents are not copied into memory (and this is why
the parameters of the load method below are both null:

KeyStore ks = KeyStore.getInstance("PKCS11", "SunPKCS11-PTeID");
ks.load(null, null);

Another option is to use the class KeyStore.Builder. This is almost equiv-
alent to the former but allows the application to handle callbacks from the
PKCS #11 provider (e.g. for asking for a PIN to authorize a particular
signing operation).

KeyStore.CallbackHandlerProtection func =

new KeyStore.CallbackHandlerProtection(new MyCallbackHandler ()
KeyStore.Builder builder =

KeyStore.Builder.newInstance("PKCS11", "SunPKCS11-PTeID", func)
KeyStore ks = builder.getKeyStore();

Note: some times the JVM throws a KeyStoreException| exception report-
ing that PKCS #11 was not found. In this case run the JVM with the
following option: -Djava.security.debug=sunpkcsll. This produces a
long list of debug messages but runs as expected.

2.2 Provider objects

A PKCS #11 provider manages a set of objects, usually keys and certificates.
With the following code we can list the names of all the objects inside a CC
(note that objects of different type can have the same name, but only one
is displayed):

Enumeration<String> aliases = ks.aliases();
while (aliases.hasMoreElements()) {

http://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
http://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html
http://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.Builder.html
http://docs.oracle.com/javase/8/docs/api/java/security/KeyStoreException.html

System.out.println(aliases.nextElement());

For some reason this code does not list all the objects that exist in the CC
(or otherwise presented as such by the CC middleware).

For making signatures with the CC the objects of interest are the two private
keys with the following names:

e CITIZEN AUTHENTICATION CERTIFICATE
e CITIZEN SIGNATURE CERTIFICATE

For validating those signatures, the objects of interest are the two public
key certificates with exactly the same names.

3 Digital signatures with the CC

Use the class Signature to create a digital signature of a data buffer using the
methods signInit, update and sign. The CC only supports SHA1withRSA
signatures.

Try the signatures with both the private keys of the CC. These can be “ob-
tained” with the KeyStore method getKey. The PIN will be asked through
a graphical interface.

Verify the signature with the same class, but now using the methods verifyInit,
update and verify. The certificates required for the validation can be ob-
tained with the KeyStore, method getCertificate.

4 Validation of certification chains

Usually digital signatures are accompanied by a set of certificates. This
set includes two different types of certificates, all of them part of a single
certification chain:

e The personal certificate of the signer (usually a person);

e The certificate of the intermediate Certification Authority the issued
the personal certificate, and the successive Certification Authorities
thereafter until the last one, immediately under a root Certification
Authority.

The validation of a certification chain must be performed for a particular
date, namely the date where a particular operation (e.g. a signature) was

http://docs.oracle.com/javase/8/docs/api/java/security/Signature.html
http://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html
http://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html

performed with the private key corresponding to the (personal) certified
public key. The validation can also use downloaded CRL lists or query
OCSP services to check possible certificate revocations at the referred date.

To validate a certification path we need first to define it. A path is no more
than a set of certificates, where one certifies the public key that signs the
other, from a trusted root (trust anchor) until the certificate that we want
ultimately to validate.

For a signature performed with a CC, and in the absence of any certification
chain provided along with the signature, we can use the following process:

e Fetch all certificates used by CC’s intermediate CAs (check this Web
page) and build a keystore with them for facilitating their usage. Add
to the keystore the certificates distributed with the CC middleware
(there may be some repeated ones). This Makefile shows how this can
be done.

e From a Java program, open the keystore, and go through all the cer-
tificates, separating them in two Java |Collections: one for the trusted
anchors (formed only by self-certified certificates), another for inter-
mediate certificates. Self-certified certificates can be easily detected
because their signature can be validated with their own public key.

PublicKey key = cert.getPublicKey();
cert.verify(key);

e Define a set of parameters (with a PKIXBuilderParameters object) for
guiding the search of a certification path from a target certificate until
some anchor. These parameters should include:

— a selector, which is a X509CertSelector object with the certificate
to validate;

a Set, of acceptable anchors (a subset of all known self-certified
certificates);

rules to validate or not revocations of certificates; and

— a CertStore| containing all known intermediate certificates.

X509CertSelector selector = new X509CertSelector();
selector.setCertificate(cert);
PKIXBuilderParameters pkixParams =

new PKIXBuilderParameters(anchors, selector);
pkixParams.setRevocationEnabled(false); // No CRL checking
pkixParams.addCertStore(intermediateCertStore);

https://pki.cartaodecidadao.pt
http://sweet.ua.pt/andre.zuquete/Aulas/Seguranca/14-15/docs/Makefile
http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/PKIXBuilderParameters.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/X509CertSelector.html
http://docs.oracle.com/javase/8/docs/api/java/util/Set.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertStore.html

e One having all these parameters set, we create a PKIX |CertPath-
Builder object and we build a PKIXCertPathBuilderResult| using those
parameters.

CertPathBuilder builder =

CertPathBuilder.getInstance("PKIX");
PKIXCertPathBuilderResult path =

(PKIXCertPathBuilderResult) builder.build(pkixParams);

Once having a certification path to validate, we can use the PKIX (Pub-
lic Key Infrastructure for X.509 certificates) certification validation rules as
follows. First we create a CertPathValidator for implementing a PKIX vali-
dation policy. Then we define the parameters for the validation (e.g. date),
and we ask for a validation.

CertPathValidator cpv = CertPathValidator.getInstance("PKIX");
PKIXParameters validationParams = new PKIXParameters(anchors);
validationParams.setRevocationEnabled(true);
validationParams.setDate(date);

cpv.validate(path.getCertPath(), validationParams);

As an exercise, validate the certification chain for both certificates in a CC
using different dates (e.g. one before their issuing, another with the current
date, and yet another after their expiration date). Check also what happens
when CRL validation is used.

References

e Portuguese Citizen Card web site: http://www.cartaodecidadao.pt

o Java PKCS #11 Reference Guide: http://docs.oracle.com/javase/
8/docs/technotes/guides/security/pliguide.html

http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertPathBuilder.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertPathBuilder.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/PKIXCertPathBuilderResult.html
http://docs.oracle.com/javase/8/docs/api/java/security/cert/CertPathValidator.html
http://www.cartaodecidadao.pt
http://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html

	Relevant CC middleware
	Exploitation of a PKCS #11 device from Java
	PKCS #11 provider
	Provider objects

	Digital signatures with the CC
	Validation of certification chains

