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Binary Analysis Process (cont.)

• Up to now we know how ELF files are structured, but the question
remains: how do we analyse ELF files?
▪ Or any other binary executable

• A possible flow can be:
▪ File analysis (file, nm, ldd, content visualization, foremost, binwalk)

▪ Static Analysis (disassemblers and decompilers

▪ Behavioral Analysis (strace, LD_PRELOAD)

▪ Dynamic Analysis (debuggers and emulators)

João Paulo Barraca 2



REVERSE ENGINEERING

Dynamic Binary Analysis

• Allows capturing the dynamic behavior of some code
▪ Behavior that depends on external input

▪ Data structures and even code revealed during execution time

• Allows runtime validation/evaluation of binary code
▪ A program,  a firmware, part of a program, a sequence of instructions

▪ Under a controlled context

▪ On a different (more flexible, or controllable, or safe) environment
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Dynamic Binary Analysis

How

• Load the binary and execute instructions of the target binary
▪ The meaning of “execute” is broader than it may look

• Allow some interaction with the binary while it is running
▪ Break the execution at some point

▪ Inspect memory and process its content

▪ Change memory, either variables or code

▪ Execute code in a controlled manner: step by step, in chunks, until a given point

João Paulo Barraca 4



REVERSE ENGINEERING

Dynamic Binary Analysis

Approaches

• Analysis of an execution flow can either be passive or active.
▪ Choosing either one or the other has consequences on the soundness, the coverage, etc. of 

the results

• Passive analysis: observation
▪ register values: return value of functions (rax), program counter (pc), stack frame (rbp, 
rsp), etc. 

▪ stack inspection: local variables, input parameters (according to some calling conventions), 
return address, etc. 

▪ heap inspection: the number of allocated blocks, their content, etc

• Active analysis: modification
▪ Easily explore paths without finding inputs that actually activate them
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Dynamic Binary Analysis

Caveats

• Binary applications are more powerful and complex 
▪ May be written in multiple languages, and have code that runs in a VM

▪ May consider code that changes the host system, or is modified in runtime

• Binary analysis of complex applications requires a different toolset
▪ The principles will be the same, but the tools will allow fine grained control and isolation

▪ Side effects and execution impact may be subtle (remember Meltdown and Spectre)

▪ Host systems may be more complex
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Considerations

(Need for) Stability

• Reversing is significantly more difficult if execution is unstable.
▪ Observations are affected by "random" factors, such as multithreaded execution, hardware behavior, 

user interactions with graphical interface and so on.

▪ Applications being reversed should be isolated from external effects are much as possible.

• Determinism in a design results from stable execution of a program run
▪ Thus it facilitates debugging and reversing.

▪ State may also be deterministically altered for the entire program or for a specific function (fuzzing)

• Logs can be obtained from executions using monitor applications
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Considerations

(Need for) Save and Replaying

• Reversing may need tracing from the current state to the code where a change was 
produced. 
▪ It implies moving "back in time". 

▪ To restore past program state, one must re-run it and try to find failure source. 

▪ This operation  may be performed multiple times, moving backward step-by-step, and then forward.

• Deterministic replay reconstructs program execution using previously recorded input data. 
▪ The first program run is used to record these inputs into the log. 

▪ Then all following runs will reconstruct the same behavior, because the program uses only recorded inputs. 

▪ Should included all inputs (disk, network)
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Considerations

(Need for) Safety

• Target binary may be malicious (… it is always malicious until proven safe)

• An important aspect of Reversing binaries is malware analysis
▪ Malware is way to complex to be analyzed statically

▪ But executing the malware may be dangerous
• Most important: dangerous in ways unknown to the reverse engineer

• Solutions must create the adequate isolation boundaries between environments
▪ If stability is required, no interactions with the software under analysis

▪ Sometimes, isolation must be broken to trigger specific behavior
• Network connection allowing contact with a C&C address or to download some payload

• Disk or file presence

• Whenever possible, such resource should be virtualized
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Considerations

(Need for) Support of Heterogeneous Architectures

• Dynamic analysis requires the execution of the program under analysis.

• An analyst will mostly run on an Intel x86 64bits computer (a COTS laptop/server)
▪ Most embedded devices are ARM, which has several variants

▪ Microcontrollers frequently use 8085, AVR or PIC architectures (MIPS)

▪ Several specialty SOCs use custom architectures (the list is large… )

▪ Several binary formats are popular: ELF, PE, DWARF and then many others from IoT

• Frameworks must be extensible in order to support a wide range of architectures
▪ And the related interfaces and customizations

▪ While minimizing the need for new tools
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Considerations

(Need for) Support of Peripherals and external entities

• Reversing an application with external interactions may require the existence 
of the related entities
▪ Web sites, servers in fixed/dynamic IP addresses

▪ Common physical devices for user input, storage, …

▪ Exotic external devices communicating through known or unknown buses

▪ Hardware Dongles

• Need to recreate the set of devices/entities required to trigger a specific path
▪ Frequently resorts to device emulation with mock software constructs
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Considerations

(Need for) Context manipulation (instrumentation)

• The main limitation of a dynamic 
approach is coverage. 

▪ Every path that is not covered by the instrumented 
executions cannot be analyzed.

▪ This limitation can be slightly reduced by performing 
active instrumentation, and in particular by forcing 
conditional branching
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Considerations

(Need for) Context manipulation (instrumentation)

• A reversing task will need to observe structure and behavior
▪ The analysis should have enough coverage to recover the adequate level of detail

▪ But while static analysis aims for wide coverage, dynamic analysis aims for focus

▪ What if a specific course of execution is not triggered?

▪ Results of dynamic analysis are dependent on the context of the execution

• Context manipulation allows setting the adequate state to trigger a specific flow of 
execution, increasing the reversing coverage
▪ Achieved by careful manipulation of execution state, registers and memory content

▪ Problems:

• May lead to the recovery of an incorrect design as the found flow may be a decoy!

• May lead to the recovery of artificial vulnerabilities, that do not really exist
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Considerations

Context manipulation (instrumentation)

• Live patching: modifying RAM in a debugger/controlled environment

• File Patching: alter binaries files to replace their content

• Binary Instrumentation: Real time, automated modification
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Considerations

Design Fidelity

•  Program under analysis may detect it and try to defend actively against analysis.
▪ For instance, it can hide a part of its behavior if it detects that it is being analyzed. 

▪ This anti-debugging and anti-instrumentation techniques are used by many malwares.

• So, when we achieve a hypothesis of a design, how correct it is?
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Considerations

Design Fidelity: example of gdb+br detection
gef➤  disassemble evil

xDump of assembler code for function evil:

   0x0000000008001163 <+0>:     endbr64

   0x0000000008001167 <+4>:     push   rbp

   0x0000000008001168 <+5>:     mov    rbp,rsp

   0x000000000800116b <+8>:     lea    rax,[rip+0xe9c]        # 0x800200e

   0x0000000008001172 <+15>:    mov    rdi,rax

   0x0000000008001175 <+18>:    call   0x8001030 <puts@plt>

   0x000000000800117a <+23>:    nop

   0x000000000800117b <+24>:    pop    rbp

   0x000000000800117c <+25>:    ret

End of assembler dump.

gef➤ br *0x0000000008001163

Breakpoint 1 at 0x8001163

gef➤  r

Starting program: main

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

evil at: 8001163 val: fa1e0fcc

Good code

[Inferior 1 (process 2175) exited normally]
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br will modify address to trigger int3
opcode for int3 is 0xcc

execution differs

endbr is 0xfa1e0ff3
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Dynamic Binary Analysis of Binaries

Processes

• Tracing

• Debugging

• Sandboxing

• Emulation

• Instrumentation
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Tracers
…  Already briefly discussed in previous lectures

• Tracers execute a binary, logging information about function and system calls

• Binary is executed in the analyst's system
▪ That is: In a VM!

• Tracer adds hooks to application or kernel to gain information about execution
▪ Access to files, packets sent, registry access

• No confinement or security measures in place
▪ Actually, there may be no interaction between the tracer and the application

• Tracer monitors system through kernel debug interfaces
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Tracers
…  Already briefly discussed in previous lectures

• Limitations:
▪ No isolation, no capability to analyze malicious or harmful code

▪ Can only inspect interactions between the application and the external environment

▪ Host environment must be compatible with the target binary

• No possibility of analyzing windows binaries on linux, vice-versa, embedded systems on windows, etc…

• Linux: ltrace, strace (ptrace), bpftrace, wireshark, 
valgrind, cachegrind, callgrind, helgrind

• Windows: process monitor, wireshark
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$ ltrace -CfirS ./hello
[pid 5287]   0.000000 [0x7f7e47875307] SYS_brk(0)                                       = 0x55582397c000
[pid 5287]   0.000447 [0x7f7e47876363] SYS_mmap(0, 8192, 3, 34)                         = 0x7f7e47854000
[pid 5287]   0.000166 [0x7f7e478760a7] SYS_access("/etc/ld.so.preload", 04)             = -2
[pid 5287]   0.000192 [0x7f7e478761dd] SYS_openat(0xffffff9c, 0x7f7e4787e103, 0x80000, 0) = 3
[pid 5287]   0.000169 [0x7f7e47875fea] SYS_newfstatat(3, 0x7f7e4787ec84, 0x7ffd04c65030, 4096) = 0
[pid 5287]   0.000072 [0x7f7e47876363] SYS_mmap(0, 0x15267, 1, 2)                       = 0x7f7e4783e000
[pid 5287]   0.000113 [0x7f7e478760c7] SYS_close(3)                                     = 0
[pid 5287]   0.000110 [0x7f7e478761dd] SYS_openat(0xffffff9c, 0x7f7e47854140, 0x80000, 0) = 3
[pid 5287]   0.000077 [0x7f7e47876234] SYS_read(3, "\177ELF\002\001\001\003", 832)      = 832
[pid 5287]   0.000146 [0x7f7e4787625a] SYS_pread(3, 0x7ffd04c64db0, 784, 64)            = 784
[pid 5287]   0.000078 [0x7f7e47875fea] SYS_newfstatat(3, 0x7f7e4787ec84, 0x7ffd04c65030, 4096) = 0
[pid 5287]   0.000102 [0x7f7e4787625a] SYS_pread(3, 0x7ffd04c64c80, 784, 64)            = 784
[pid 5287]   0.000082 [0x7f7e47876363] SYS_mmap(0, 0x1e1f50, 1, 2050)                   = 0x7f7e4765c000
[pid 5287]   0.000286 [0x7f7e47876363] SYS_mmap(0x7f7e47682000, 0x155000, 5, 2066)      = 0x7f7e47682000
[pid 5287]   0.000094 [0x7f7e47876363] SYS_mmap(0x7f7e477d7000, 0x54000, 1, 2066)       = 0x7f7e477d7000
[pid 5287]   0.000123 [0x7f7e47876363] SYS_mmap(0x7f7e4782b000, 0x6000, 3, 2066)        = 0x7f7e4782b000
[pid 5287]   0.000109 [0x7f7e47876363] SYS_mmap(0x7f7e47831000, 0xcf50, 3, 50)          = 0x7f7e47831000
[pid 5287]   0.000113 [0x7f7e478760c7] SYS_close(3)                                     = 0
[pid 5287]   0.000071 [0x7f7e47876363] SYS_mmap(0, 0x3000, 3, 34)                       = 0x7f7e47659000
[pid 5287]   0.000121 [0x7f7e47870eb5] SYS_arch_prctl(4098, 0x7f7e47659740, 0xffff8081b89a5f30, 34) = 0
[pid 5287]   0.000071 [0x7f7e4786800a] SYS_set_tid_address(0x7f7e47659a10, 0x7f7e47659740, 0x7f7e478890b0, 34) = 5287
[pid 5287]   0.000088 [0x7f7e47868066] SYS_set_robust_list(0x7f7e47659a20, 24, 0x7f7e478890b0, 34) = 0
[pid 5287]   0.000067 [0x7f7e4786809d] SYS_334(0x7f7e4765a060, 32, 0, 0x53053053)       = 0
[pid 5287]   0.000176 [0x7f7e478763c7] SYS_mprotect(0x7f7e4782b000, 16384, 1)           = 0
[pid 5287]   0.000069 [0x7f7e478763c7] SYS_mprotect(0x555822a8c000, 4096, 1)            = 0
[pid 5287]   0.000096 [0x7f7e478763c7] SYS_mprotect(0x7f7e47886000, 8192, 1)            = 0
[pid 5287]   0.000097 [0x7f7e47758fa0] SYS_prlimit64(0, 3, 0, 0x7ffd04c65b70)           = 0
[pid 5287]   0.000121 [0x7f7e478763a7] SYS_munmap(0x7f7e4783e000, 86631)                = 0
[pid 5287]   0.003672 [0x555822a8a14c] puts("Hello Word" <unfinished ...>
[pid 5287]   0.000826 [0x7f7e4775301a] SYS_newfstatat(1, 0x7f7e477f1df3, 0x7ffd04c65cc0, 4096) = 0
[pid 5287]   0.000609 [0x7f7e476f0535] SYS_318(0x7f7e47836498, 8, 1, 4096)              = 8
[pid 5287]   0.000107 [0x7f7e477593f7] SYS_brk(0)                                       = 0x55582397c000
[pid 5287]   0.000070 [0x7f7e477593f7] SYS_brk(0x55582399d000)                          = 0x55582399d000
[pid 5287]   0.000081 [0x7f7e47753b00] SYS_write(1, "Hello Word\n", 11Hello Word
)                 = 11
[pid 5287]   0.000172 [0x555822a8a14c] <... puts resumed> )                             = 11
[pid 5287]   0.000084 [0x7f7e4772f995] SYS_exit_group(11 <no return ...>
[pid 5287]   0.000443 [0xffffffffffffffff] +++ exited (status 11) +++
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System calls
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Debugging

• Applications that can control (trace) a target executing binary
▪ Debuggers can create a process and analyze it or attach to a running process

• Process usually executes in the host system

▪ This is the “typical”, low tech way of dynamically analyzing a program

• Reuses concepts/tools from the engineering process, applied to reverse engineering

• Provide: extensive, interactive control over a process execution flow
▪ Frequently at the level of opcodes and assembly

▪ Can be integrated with static analysis tools

• Combining execution information with decompiled code, CFGs, disassembly
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Debugging

Limitations

• Debugging can be detected and subverted by the target application
▪ Especially popular in malware and DRM systems

• Target application must be executed in a full hosted environment
▪ Without isolation measures, this provides a serious security risk

▪ Remote debugging may be used to circumvent this limitation

• Host system architecture must match the target binary architecture
▪ Binary is loaded to the host system as a standard process

▪ No debugging of windows in Linux, ARM or MIPS in x86

▪ No direct way of debugging shellcode or a binary blob (e.g firmware).
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Debugging

How debuggers work?

• Debuggers explore system calls provided by the operating system
▪ Debuggers either:

• create a child process, sharing the same address space

• attach to an existing process given that the user has the correct permissions (e.g. root)

▪ Linux: ptrace

▪ Windows: provides API for process control

• CreateProcess with specific dwCreationFlags (DEBUG_PROCESS)

• OpenProcess with dwDesiredAccess (PROCESS_VM_READ, PROCESS_VM_WRITE, 
PROCESS_VM_OPERATION)

• Debuggers may attach to hardware devices providing external debugging
▪ Used in embedded devices
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Debugging

edb and x86dbg
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Debugging
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PTRACE

Signal

Kernel

Debugger Hello

Debugger set breakpoints which
Trigger SIGTRAP, returning control
to the debugger.

Patching the code with 0xCC or using
Hardware breakpoints (through PTRACE)
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Debugging

debugger.c
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fork() duplicates the current process. While 
sharing the same address space.

One (child) will execute run_target()
Other (parent) will execute run_debugger()
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Debugging

debugger.c
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Child process allows tracing

execl will replace the current process image with 
the binary loaded from the storage.

In this moment, the processes become different.
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Debugging

debugger.c
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Wait for process to start

Get CPU registers

Wait for instruction to finish

Single Step through one instruction (ASM)
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Sandboxing

• Sandboxing improves the control that debuggers provide
▪ Creation of a distinct execution environment

• Different libraries? Restricted view of the filesystem (minimal access to files)

▪ Isolate some actions, providing some safety to analyze malicious applications

• Implementation: lightweight virtual machines or namespaces/containers
▪ Supported my mechanisms of the Operating System or additional tools

▪ Tools: sandboxie, pyrebox, panda

• An agent monitors interactions of the application inside the environment and 
may allow instrumentation
▪ File access, network communication

▪ Remote debugging
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Emulators

• Emulators are common backends for secur sandboxes
▪ May provide much better isolation as the guest and host environments are distinct

• Kernel is not shared, hardware is emulated

▪ Tools: QEMU, Virtualbox, Vmware

• Emulation types
▪ Full system emulation

▪ User mode emulation
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Emulators

User Mode Emulation

• Launches a processes directly, but on a restricted environment
▪ Process may be compiled for one CPU and executed on another CPU

▪ Address space is restricted, such as filesystem and libraries available

▪ Interaction with Host OS is mediated by the emulator

• Emulator process native CPU instructions (emulation/translation) and:
▪ Provide means to translate syscalls from guest to host OS

▪ Understand intrinsic characteristics such as clone

• Clone is used to spawn new processes and will require the creation of a new emulation environment

▪ Handle signals between analyzed binary and the host system

• May provide integration with debugging tools
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Emulators

User Mode Emulation with QEMU

• QEMU allows user mode emulation as long as the OS is kept the same

• What it does:
▪ Machine code translation from any CPU to any CPU

▪ Syscall mapping

▪ Data structure conversion (Bit-order and Bit-width conversions)

▪ Extensive tracing capability to the level of Micro Ops

• Provides a gdbserver interface for interaction with GDB

• Usefulness: reverse engineering applications compiled to other architectures
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Emulators

Full System Emulation

• Basically: a full-blown virtual machine
▪ Emulates a highly configurable set of hardware, including embedded devices

▪ Maps interactions to Host resources (screen, disk, network)

▪ RE aware software tools expose debugging interfaces (usually to gdb)

• Provides the best level of isolation
▪ All accesses are mediated by the emulator, reducing the attack surface to emulator components

▪ Allows analyzing other binaries besides standard executable files

• Firmware, MBR, UEFI

• Malware frequently try to detect Virtual Machines, emulators and debuggers…
▪ With variable sophistication
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Remote debugging with emulators

gdb and gdbserver

• gdb can debug remote applications
▪ It can even debug remote kernels and firmware

▪ Why? Consider embedded devices, software inside an emulator

• gdbserver is launched on the target system, with the arguments:
▪ Either a device name (to use a serial line) or a TCP hostname and portnumber, and the path and filename of the executable 

to be debugged

▪ It then waits passively for the host gdb to communicate with it.

• gdb is run on the host, with the arguments:
▪ The path and filename of the executable (and any sources) on the host, and

▪ A device name (for a serial line) or the IP address and port number needed for connection to the target system.

• Alternative: the remote application is compiled with a stub that provides a gdbserver interface 
when the application is launched
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Example

Reversing an ARM binary
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Example

unknown.bin

• Remember the unknown.bin file?
▪ Well… looks like a PDF (is a PDF)

▪ but $ file unknown.bin returns “unknown.bin: DOS/MBR boot sector”

• What we may extrapolate from that:
▪ Seems to be a DOS/Master Boot Record (Master boot record – Wikipedia)

▪ DOS was only released for i386 (16bits and 32bits)

▪ qemu-system-i386 may boot it if used as a hard disk or floppy disk
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Example

unknown.bin

• How to address such files?
▪ Binary files other than ELFs (or PE or other similar) obey to a fixed set of rules

▪ It is required to check the datasheets and gather information required to load the file.

▪ Important:

• CPU used, CPU mode, relevant or required peripherals: to know how to decode the binary instructions

• Program Entry Point: to know where the program starts, and where disassembly should start

• From a Master Boot Record we may know:
▪ MBR is loaded to address 0x7C00

▪ MBR code runs in Intel x86 Real Mode (16bits)

▪ There are quite a few limitations and assumptions: IBM DOS 2.00 Master Boot Record (pcministry.com)

▪ There is no OS running. Input/Output must use BIOS Interrupts
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https://thestarman.pcministry.com/asm/mbr/200MBR.htm
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Example

Loading the unknown.bin in ghidra
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Example

Loading the unknown.bin in ghidra
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Example

Loading the unknown.bin in ghidra
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If we state that 0x7C00 has code, looks like we have 
something



REVERSE ENGINEERING

Example

Loading the unknown.bin in ghidra
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Some check to int 13H 
(HDD or Floppy)

A loop XORing  data at 
0x7C85.

XOR uses a variable key 
(register CL). It’s both the 

index and the key.

Jumps to 0x7C85 but data at 
0x7C85 is decrypted in real 
time. Static analysis cannot 

see it… 

Must use dynamic analysis ☺
for i in range(0x7dfe – 0x7c85):
 ram[0x7c85 + i] ^= i
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Example

Loading the unknown.bin in qemu with gdb
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Execute GDB
Connect to the gdbserver

Do some initialization to set the CPU 
and display layout

Launch qemu-system-i386 with a 
gdbserver socket and monitor socket

It runs and we have 
control in GDB
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Example

Loading the unknown.bin in qemu with gdb
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Approach:
- Set a breakpoint to 0x7c85

- Continue (let it decrypt)
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Example

Loading the unknown.bin in qemu with gdb
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Connect to the QEMU Control socket
Dump physical RAM (1MB)

This file can be loaded in ghidra and should contain 
the decrypted code! ☺

Can you recover the flags only with RE? (*)

(*) there may be some additional steps involved. ☺
Analyze CFGs, rename, retype and combine with dynamic analysis whenever relevant
Enjoy the ASCII art and praise @zezadas for the great work with this binary.
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Dynamic Binary Instrumentation (DBI)

What are they

• DBI system as an application virtual machine that interprets the ISA of a specific platform
▪ usually (but not always) coinciding with the one where the system runs

▪ offering instrumentation capabilities to support monitoring and altering instructions and data from an analysis tool 
component

▪ Up to the level of a single instruction

• DBI systems expand standard Dynamic Binary Analysis tasks by
▪ Fine grained monitoring capabilities

▪ Full control over data and instructions, potentially increasing Reverse Engineering Scope

• Uses
▪ Measure performance, Detect vulnerabilities, Force code execution, Fuzz binary programs at the scale of a group of 

instructions
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Dynamic Binary Instrumentation (DBI)

caveats

• DBI is vulnerable to specific attacks targeting the emulator
▪ Purpose: avoid the use of emulators or induce incorrect results

▪ Exploit the fact that DBI tools are slow

▪ Exploit the fact that the system is emulated and differs from a real system

• Some approaches
▪ Extensive loops Timing measurements

▪ Timing measurements

▪ Testing for system specific behavior
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Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code
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Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code
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New 
code
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Dynamic Binary Instrumentation (DBI)

What are they

• Instrumentation
▪ Insert Code

• Dynamic Binary Instrumentation
▪ “Running” Code
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Force 
execution

New 
code
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Dynamic Binary Instrumentation (DBI)

How they work?

• Rebuild a program binary code using some JIT technique
▪ Insert trace points and hooks for inspection

▪ Divert execution to additional user specified functions

▪ Monitor access to memory regions

• Potentially triggering callbacks on access

▪ May reimplement access to IOs or even syscalls and interrupts

▪ May create a fully Emulated Execution Environment

• Can be combined with an Emulation platform such as QEMU or Unicorn (a fork from QEMU)

• Popular tools: valgrind, DynamoRIO, Intel PIN, DynInst, Qiling, Frida
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Dynamic Binary Instrumentation (DBI)

Daniele D’Elia et al, SoK: Using Dynamic Binary Instrumentation for Security, AsiaCCS, 2019
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DBI with Qiling

DBI tool that can perform:

• Emulation: Executes binary code step by step, replacing instructions

• Binary instrumentation: allows injection of user specified code

• Cross-platform and cross-architectural analysis: analyze one 
architecture or OS on another

• Sandboxing: I/O is redirected to fake devices (files, sockets)

• On raw binaries: used to analyze blobs from binary devices or 
shellcode
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DBI with Qiling

Emulation

• Syscalls and interrupt are implemented in python
▪ Program calls syscall/interrupt

▪ Qiling invokes handler in python, which mimics a standard system

▪ Implementation can be overridden by the user

• Host OS is never called, and result is provided by Qiling
▪ Advantages:

• Great control over the execution

• Great isolation

▪ Disadvantages:

• Not all calls are implemented

• Behavior mimics an ideal system and may deviate from reality
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DBI with Qiling

Instrumentation

• User can define hooks to triggering callbacks on an event
▪ Because an emulator is translating code in real time, instruction level hooks are possible

• Example
▪ Code execution reaches a specific address

▪ An address is written or read

▪ A function is called, or is leaving

▪ An instruction is executed
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DBI with Qiling

Cross Platform and Cross Architecture

• Binary code is emulated, allowing cross architecture execution
▪ Target architecture instructions are compiled to native instructions

• Because all syscalls and interrupts are emulated, host platform can differ 
from target platform
▪ As Qiling is based on Unicorn (Qemu), a wide range of possibilities is available
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DBI with Qiling

Loading an Elf

• Qiling has several loaders
▪ MBR

▪ PE, ELF, MachO

▪ Unstructured binary (shellcode)

• Loader will make code available to be emulated on a secure rootfs
▪ Calls to interrupts and syscalls are implemented in python
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DBI with Qiling

Overriding a library function

• Functions can be overridden with custom 
implementations
▪ Code can access arguments of basic types (Strings, 

Ints, Floats)

▪ Inside function, other external functions can be called

▪ Entire set of registries and memory can be 
manipulated

▪ Return is provided to the calling function to be 
emulated on a secure rootfs

▪ Calls to interrupts and syscalls are implemented in 
python
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