Binary Analysis — Emulation and Instrumentation

REVERSE ENGINEERING

Joao Paulo Barraca

B Binary Analysis Process (cont.)

* Up to now we know how ELF files are structured, but the question

remains: how do we analyse ELF files?
= Or any other binary executable

* A possible flow can be:
= File analysis (file, nm, Idd, content visualization, foremost, binwalk)

= Static Analysis (disassemblers and decompilers
= Behavioral Analysis (strace, LD_PRELOAD)
= Dynamic Analysis (debuggers and emulators)

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Analysis

* Allows capturing the dynamic behavior of some code
= Behavior that depends on external input

= Data structures and even code revealed during execution time

* Allows runtime validation/evaluation of binary code
= A program, afirmware, part of a program, a sequence of instructions

= Under a controlled context
= On a different (more flexible, or controllable, or safe) environment

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Analysis
. How

* Load the binary and execute instructions of the target binary
= The meaning of “execute” is broader than it may look

* Allow some interaction with the binary while it is running
= Break the execution at some point

= Inspect memory and process its content
= Change memory, either variables or code
= Execute code in a controlled manner: step by step, in chunks, until a given point

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Analysis
. Approaches

* Analysis of an execution flow can either be passive or active.

= Choosing either one or the other has consequences on the soundness, the coverage, etc. of
the results

. Passwe analysis: observation

= register values: return value of functions (rax), program counter (pc), stack frame (rbp,
rsp), etc.

= stack inspection: local variables, input parameters (according to some calling conventions),
return address, etc.

= heap inspection: the number of allocated blocks, their content, etc

e Active analysis: modification
= Easily explore paths without finding inputs that actually activate them

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Analysis
. Caveats

* Binary applications are more powerful and complex
= May be written in multiple languages, and have code that runs in a VM

= May consider code that changes the host system, or is modified in runtime

* Binary analysis of complex applications requires a different toolset
= The principles will be the same, but the tools will allow fine grained control and isolation

= Side effects and execution impact may be subtle (remember Meltdown and Spectre)

= Host systems may be more complex

Jodo Paulo Barraca REVERSE ENGINEERING H

] Considerations
. (Need for) Stability

e Reversing is significantly more difficult if execution is unstable.
= Observations are affected by "random" factors, such as multithreaded execution, hardware behavior,
user interactions with graphical interface and so on.

= Applications being reversed should be isolated from external effects are much as possible.

* Determinism in a design results from stable execution of a program run
= Thus it facilitates debugging and reversing.

= State may also be deterministically altered for the entire program or for a specific function (fuzzing)

* Logs can be obtained from executions using monitor applications

Jodo Paulo Barraca REVERSE ENGINEERING

] Considerations
. (Need for) Save and Replaying

* Reversing may need tracing from the current state to the code where a change was

produced.
= |t implies moving "back in time".
= To restore past program state, one must re-run it and try to find failure source.

= This operation may be performed multiple times, moving backward step-by-step, and then forward.

* Deterministic replay reconstructs program execution using previously recorded input data.
= The first program run is used to record these inputs into the log.

= Then all following runs will reconstruct the same behavior, because the program uses only recorded inputs.

= Should included all inputs (disk, network)

Jodo Paulo Barraca REVERSE ENGINEERING n

] Considerations
. (Need for) Safety

e Target binary may be malicious (... it is always malicious until proven safe)

* An important aspect of Reversing binaries is malware analysis
= Malware is way to complex to be analyzed statically

= But executing the malware may be dangerous
* Most important: dangerous in ways unknown to the reverse engineer

e Solutions must create the adequate isolation boundaries between environments
= |f stability is required, no interactions with the software under analysis

= Sometimes, isolation must be broken to trigger specific behavior

* Network connection allowing contact with a C&C address or to download some payload
* Disk or file presence
* Whenever possible, such resource should be virtualized

Jodo Paulo Barraca REVERSE ENGINEERING n

] Considerations
. (Need for) Support of Heterogeneous Architectures

* Dynamic analysis requires the execution of the program under analysis.

* An analyst will mostly run on an Intel x86 64bits computer (a COTS laptop/server)
= Most embedded devices are ARM, which has several variants

= Microcontrollers frequently use 8085, AVR or PIC architectures (MIPS)
= Several specialty SOCs use custom architectures (the list is large...)

= Several binary formats are popular: ELF, PE, DWARF and then many others from loT

* Frameworks must be extensible in order to support a wide range of architectures
= And the related interfaces and customizations

= While minimizing the need for new tools

Jodo Paulo Barraca REVERSE ENGINEERING

] Considerations
. (Need for) Support of Peripherals and external entities

* Reversing an application with external interactions may require the existence

of the related entities
= Web sites, servers in fixed/dynamic IP addresses

= Common physical devices for user input, storage, ...
= Exotic external devices communicating through known or unknown buses

= Hardware Dongles

* Need to recreate the set of devices/entities required to trigger a specific path
= Frequently resorts to device emulation with mock software constructs

Jodo Paulo Barraca REVERSE ENGINEERING

ll Considerations

. (Need for) Context manipulation (instrumentation)

* The main limitation of a dynamic
approach is coverage.

= Every path that is not covered by the instrumented
executions cannot be analyzed.

= This limitation can be slightly reduced by performing
active instrumentation, and in particular by forcing
conditional branching

Example of Intel PIN coverage output provided to IDA
https://hex-rays.com/products/ida/support/tutorials/pin/pin_tutorial.html

Jodo Paulo Barraca

FIZE]

; Attributes: bp-based frame

; int _ cdecl main(int argc, const char **argv, const char **envp)
lpublic main

main proc near

lvar 10= dword ptr -10h

var_C= dword ptr -0Ch
lvar 8= qword ptr -8

lpush rbp

FIZE
lea rdi, s ; "yo"
call _puts
Jmp short loc 555555554772

[l g

[. s .
call stack chk fail

] Considerations

. (Need for) Context manipulation (instrumentation)

* A reversing task will need to observe structure and behavior
= The analysis should have enough coverage to recover the adequate level of detail

= But while static analysis aims for wide coverage, dynamic analysis aims for focus
= What if a specific course of execution is not triggered?
= Results of dynamic analysis are dependent on the context of the execution

e Context manipulation allows setting the adequate state to trigger a specific flow of

execution, increasing the reversing coverage
= Achieved by careful manipulation of execution state, registers and memory content

= Problems:

* May lead to the recovery of an incorrect design as the found flow may be a decoy!
* May lead to the recovery of artificial vulnerabilities, that do not really exist

Jodo Paulo Barraca REVERSE ENGINEERING

] Considerations

. Context manipulation (instrumentation)

* Live patching: modifying RAM in a debugger/controlled environment

* File Patching: alter binaries files to replace their content

* Binary Instrumentation: Real time, automated modification

Jodo Paulo Barraca REVERSE ENGINEERING

] Considerations
. Design Fidelity

* Program under analysis may detect it and try to defend actively against analysis.
= Forinstance, it can hide a part of its behavior if it detects that it is being analyzed.

= This anti-debugging and anti-instrumentation techniques are used by many malwares.

* So, when we achieve a hypothesis of a design, how correct it is?

The completely unrelated

In completely unrelated news, upcoming versions of Signal will be periodically
fetching files to place in app storage. These files are never used for anything
inside Signal and never interact with Signal software or data, but they look nice,
and aesthetics are important in software. Files will only be returned for accounts
that have been active installs for some time already, and only probabilistically in
low percentages based on phone number sharding. We have a few different
versions of files that we think are aesthetically pleasing, and will iterate through
those slowly over time. There is no other significance to these files.

Jodo Paulo Barraca https://signal.org/blog/cellebrite-vulnerabilities/ REVERSE ENGINEERING

Bl Considerations
. Design Fidelity: example of gdb+br detection

gef» disassemble evil

xDump of assembler code for function evil: endbr‘ is OX‘FaleO‘F‘FB
0x0000000008001163 <+0>: endbr64
0x0000000008001167 <+4>: push rbp
0x0000000008001168 <+5>: mov rbp,rsp
0x000000000800116b <+8>: lea rax, [rip+0xe9c] # Ox800200e
0X0000000008001172 <+15>: mov rdi,rax
0x0000000008001175 <+18>: call ©x8001030 <puts@plt>
0x000000000800117a <+23>: nop
0x000000000800117b <+24>: pop rbp
0x000000000800117Cc <+25>: ret

End of assembler dump.

gef» br *0x0000000008001163 br will modify address to trigger int3

Breakpoint 1 at 0x8001163 . .
opcode for int3 is Oxcc

gef» r

Starting program: main

[Thread debugging using libthread db enabled]

Using host libthread_db library "/1lib/x86 64-linux-gnu/libthread db.so.1".
evil at: 8001163 val: faledfcc

Good code G

[Inferior 1 (process ZI799¥=exiied normally]

———Fyil code

Jo3do Paulo Barraca execution differs

antibr
File: main.c
#include<stdlib.h=
#inc stdio.h>
#include<stdint.h>

void good(){
printf(“Good code\n");

void evil{) {
printf(“Evil code\n");

int main(int argc, char** argv) {
uint32_t* ptr = (void*) evil;

printf(“evil at: %x val: %x\n", ptr, *ptr);
if(*ptr == Oxfale®@ff3) {

evil();
}else {

good();

}

antibr fcf-protection -0 main main.c
antibr

evil at: 778fcle3 val: falelOff3

REVERSE ENGINEERING

l Dynamic Binary Analysis of Binaries

. Processes

* Tracing

* Debugging
e Sandboxing
* Emulation

* Instrumentation

Jodo Paulo Barraca REVERSE ENGINEERING

[l Tracers

. ... Already briefly discussed in previous lectures

* Tracers execute a binary, logging information about function and system calls

* Binary is executed in the analyst's system
= Thatis: Ina VM!

* Tracer adds hooks to application or kernel to gain information about execution
= Access to files, packets sent, registry access

* No confinement or security measures in place
= Actually, there may be no interaction between the tracer and the application

* Tracer monitors system through kernel debug interfaces

Jodo Paulo Barraca REVERSE ENGINEERING

[l Tracers

. ... Already briefly discussed in previous lectures

* Limitations:
= No isolation, no capability to analyze malicious or harmful code

= Can only inspect interactions between the application and the external environment

= Host environment must be compatible with the target binary

* No possibility of analyzing windows binaries on linux, vice-versa, embedded systems on windows, etc...

* Linux: 1trace, strace (ptrace), bpftrace, wireshark,
valgrind, cachegrind, callgrind, helgrind

* Windows: process monitor, wireshark

Jodo Paulo Barraca REVERSE ENGINEERING

$ ltrace -CfirS ./hello

[pid 5287] ©.000000 [Ox7f7e47875307] SYS_brk(o) = 0x55582397c000
[pid 5287] ©.000447 [Ox7f7e47876363] SYS_mmap(@, 8192, 3, 34) = 0x7f7e47854000
[pid 5287] ©.000166 [Ox7f7e478760a7] SYS_access("/etc/ld.so.preload", 04) = -2

[pid 5287] ©.000192 [@x7f7e478761dd] SYS_openat(@xffffffoc, Ox7f7e4787e¢103, 0x80000, 0) = 3

[pid 5287] ©.000169 [Ox7f7e47875fea] SYS_newfstatat(3, Ox7f7e4787ec84, Ox7ffdo4c65030, 4096) =

[pid 5287] ©.000072 [0x7f7e47876363] SYS_mmap(@, ©x15267, 1, 2) = Ox7f7e4783e000
[pid 5287] ©.000113 [0Ox7f7e478760c7] SYS_close(3))

[pid 5287] ©.000110 [Ox7f7e478761dd] SYS_openat(Oxffffffoc, Ox7f7e47854140, 0x80000, 0) =

[pid 5287] ©.000077 [@Ox7f7e47876234] SYS_read(3, "\177ELF\002\001\001\003", 832) = 832

[pid 5287] ©.000146 [Ox7f7e4787625a] SYS_pread(3, Ox7ffdoe4c64dbo, 784, 64) = 784

[pid 5287] ©.000078 [Ox7f7e47875fea] SYS_newfstatat(3, Ox7f7e4787ec84, Ox7ffdo4c65030, 4096) =

[pid 5287] ©.000102 [Ox7f7e4787625a] SYS_pread(3, Ox7ffdoe4c64c80, 784, 64) = 784

[pid 5287] ©.000082 [0Ox7f7e47876363] SYS_mmap(©, ©xlelf50, 1, 2050) = Ox7f7e4765c000
[pid 5287] 0.000286 [Ox7f7e47876363] SYS_mmap(0x7f7e47682000, Ox155000, 5, 2066) = Ox7f7e47682000
[pid 5287] ©.000094 [0x7f7e47876363] SYS_mmap(0x7f7e477d7000, 0x54000, 1, 2066) = Ox7f7e477d7000
[pid 5287] 0.000123 [Ox7f7e47876363] SYS_mmap(0x7f7e4782b000, 0Ox6000, 3, 2066) = Ox7f7e4782bo0o0
[pid 5287] ©.000109 [Ox7f7e47876363] SYS_mmap(0x7f7e47831000, Oxcf50, 3, 50) = Ox7f7e47831000
[pid 5287] ©.000113 [@x7f7e478760c7] SYS_close(3) =0

[pid 5287] 0.000071 [0x7f7e47876363] SYS_mmap(0, ©x3000, 3, 34) = 0X7f7e47659000
[pid 5287] 0.000121 [Ox7f7e47870eb5] SYS_arch_prctl (4098, 0x7f7e476597490, 0Xffff8081b89a5f39 34) =

[pid 5287] 0.000071 [0x7f7e4786800a] SYS_set_tid_address(0x7f7e47659a10, 0x7f7e47659749, 0X7f7e478890b0, 34) = 5287
[pid 5287] ©.000088 [Ox7f7e47868066] SYS_set robust list(@x7f7e47659a20, 24, Ox7f7e478890b0, 34) =
[pid 5287] ©.000067 [0x7f7e4786809d] SYS_334(0x7f7e4765a060, 32, 0, 0x53053053) =0 Function calls
[pid 5287] 0.000176 [Ox7f7e478763c7] SYS_mprotect(Ox7f7e4782b000, 16384, 1) = 0

[pid 5287] ©.000069 [@x7f7e478763c7] SYS_mprotect(@x555822a8c000, 4096, 1) =0 System calls
[pid 5287] 0.000096 [Ox7f7e478763c7] SYS_mprotect(0x7f7e47886000, 8192, 1) 0

[pid 5287] 0.000097 [Ox7f7e47758fa@] SYS prlimite4(0, 3, 0, Ox7ffde4c65b70) S0

[pid 5287] ©.000121 [@x7f7e478763a7] SYS_munmap(@x7f7e4783e000, 86631) =0

[pid 5287] ©.003672 [0x555822a8al4c] puts("Hello Word" <unfinished ...>

[pid 5287] ©.000826 [@x7f7e4775301a] SYS_newfstatat(l, Ox7f7e477f1df3, Ox7ffde4c65cco, 4096) = 0

[pid 5287] ©.000609 [Ox7f7e476¥0535] SYS 318(0x7f7e47836498, 8, 1, 4096) =5

[pid 5287] ©.000107 [Ox7f7e477593f7] SYS_brk(e) = @x55582397C000
[pid 5287] ©.000070 [Ox7f7e477593f7] SYS_brk(@x55582399d000) = 9x55582399d000
[pid 5287] ©.000081 [0x7f7e47753b00] SYS write(1, "Hello Word\n", 11Hello Word

) =11

[pid 5287] 0.000172 [0x555822a8al4c] <... puts resumed>) = 11

[pid 5287] 0.000084 [0x7f7e4772f995] SYS_exit_group(11l <no return ...>

[pid 5287] 0.000443 [Oxffffffffffffffff] +++ exited (status 11) +++

Jodo Paulo Barraca REVERSE ENGINEERING

ZF Process Monitor - Sysinternals: www.sysinternals.com
File Edit Ewent Filter Tools Options Help
FEIABE(CAG B[AN| KD AW

PID Operation
1744 #¥ RegluenyValue

Time of Day Process Name

6:20:34 4727264 PM B- dwm.exe
6:20:34.4733777 PM - dwm .exe 1744 ﬁﬂeg@uew\falue
6:20:34.4734050 PM "B~ dwm .exe 1744 ﬁﬂeg@uew‘nfalue
6:20:34 4745306 PM T~ atiecho exe 4338
6:20:34 4734765 PM - FoxitReaderUpdateServic... 7072 gaCreateFile
6:20:34 4306333 PM - dwm .exe 1744 ¥ RegluenyValue
6:20:34 4807006 PM “B- dwm exe 1744 ﬁﬂeg@uew\falue
6:20:34 4314350 PM 'B- dwm.exe 1744 ﬁﬂeg@uew‘nfalue
6:20:34 4814669 PM - dwm.exe 1744 ﬁﬂeg[]uerﬂfalue
6:20:34 4329904 PM B- atiecho exe
6:20:34. 4871368 PM - dwm.exe
6:20:34 4872250 PM B- dwm.exe
6:20:34 4882720 PM - dwm .exe
6:20:34 4833107 PM B- dwm.exe
6:20:34 4898133 PM T~ atiecho exe
6:20:34 4946592 PM "B~ dwm exe 1744 ﬁﬂeg@uew\falue
6:20:34 4946777 PM - dwm exe 1744 % RegluenyValue
6:20:34 4954656 PM B- dwm exe 1744 ﬁﬂeg@uew\falue
6:20:34 4955028 PM - dwm .exe 1744 ﬁﬂeg@uew‘nfalue
6:20:34 4967433 PM B~ atiecho exe

6:20:34 5026921 PM - dwm.exe

6:20:34.5027294 PM “B- dwm.exe

6:20:34.5032906 PM B- dwm.exe

6:20:34.5033048 PM - dwm .exe

6:20:34 5046926 PM B~ atiecho exe

6:20:34 5104047 PM B~ Foxit Readerlpdate Servic...
6:20:34 5106292 PM “B- dwm exe

6:20:34 5106426 PM - dwm .exe

6:20:34 5114190 PM - dwm .exe 1744 ﬁﬂeg@uew‘nfalue
6:20:314 5114449 PM - dwm .exe 1744 ﬁﬂeg@uew‘nfalue
6:20:34 5126114 PM B~ atiecho exe 4538
6:20:34.5187472 PM - dwm.exe
6:20:34.5187396 PM - dwm .exe
6:20:34.5196183 PM B- dwm.exe
6:20:34.5196579 PM - dwm .exe
6:20:34 5208130 PM B~ atiecho exe
6:20:34 5266325 PM - dwm .exe
6:20:34 5267404 PM - dwm exe
6:20:34 5274177 PM - dwm exe
6:20:34 5274533 PM - dwm.exe
6:20:34 5291568 PM B- atiecho exe
6:20:34 5346390 PM - dwm .exe 1744 ﬁﬂeg[]uerﬂfalue
6:20:314 5347063 PM B- dwm .exe 1744 %Heg@uery\falue

e L T R L g T Rl Aaaa e

1744 #¥% RegQuenyValue
1744 &% RegluenyValue
1744 % RegQuenyValue
1744 &% RegluenyValue

1744 % RegluenyValue
1744 #% RegQuenyValue
1744 &% RegluenyValue
1744 % RegQuenyValue

7072 BhCreatefile
1744 #% RegluenyValue
1744 % RegluenyValue

1744 % RegluenyValue
1744 % RegQuenyValue
1744 &% RegluenyValue
1744 % RegQuenyValue

1744 ¥ RegluenyValue
1744 #% RegluenyValue
1744 % RegluenyValue
1744 #% RegQuenyValue

<

Ba@ueryNamelnfn...

4928 BhQueryNamelrfo...

4938 [FhQueryNamelrfo...

4938 [FhQueryNamelrfo...

4588 EhQueryNamelfo...

&Querymamelnfn...

4938 BhCQueryNamelnfo...

4928 BhQueryNamelrfo...

Path

HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
HKCLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
C:“Programs*Process Monitor Procmon 64 exe
C:"ProgramDataFoxit Software’\Foxit ReaderFoxitData
HKCUMSOFTWARE \Microsoft \Windows "\ DWM\ColorPrevalence
HKCLMNSOFTWARE \Microsaoft \ Windows \DWM*\ColorPrevalence
HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECLMNSOFTWARE \Microsoft \Windows \DWM*\ColorPrevalence
C:%Programs*Process Manitor Procmon 64 exe

HECLMNSOFTWARE \Microsoft \Windows \DWM*\ColorPrevalence
HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
HKCLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
C:“Programs*Process Monitor Procmon 64 exe

HKCLMNSOFTWARE \Microsaoft \ Windows \DWM*\ColorPrevalence
HKCUMSOFTWARE \Microsoft \Windows "\ DWM\ColorPrevalence
HKCLMNSOFTWARE \Microsaoft \ Windows \DWM*\ColorPrevalence
HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
C:“Programs*Process Monitor Procmon 64 exe

HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
HKCLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
C:Programs*Process Monitor Procmon 64 exe
C:\ProgramData*Foxit Software‘\Foxit Reader\FoxitData b
HKCLMNSOFTWARE \Microsaoft \ Windows \DWM*\ColorPrevalence
HKCUMSOFTWARE \Microsoft \Windows "\ DWM\ColorPrevalence
HKCLASOFTWARE \Microsoft \Windows \DWM*\ColorPrevalence
HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
C:“Programs*Process Monitor Procmon 64 exe

HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HKCLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
HECUNSOFTWARE \Microsoft \Windows"DWM\ColorPrevalence
HKCLMSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence
C:Programs*Process Manitor Procmon 64 exe

HKCUMSOFTWARE \Microsoft \Windows "\ DWM\ColorPrevalence
HKCLMNSOFTWARE \Microsaoft \ Windows \DWM*\ColorPrevalence
HKCUMSOFTWARE \Microsoft \Windows "\ DWM\ColorPrevalence
HECLMNSOFTWARE \Microsoft \Windows \DWM*\ColorPrevalence
C:%Programs*Process Manitor Procmon 64 exe

HECLMNSOFTWARE \Microsoft \Windows \DWM*\ColorPrevalence
HKCUNSOFTWARE \Microsoft \Windows \DWM\ColorPrevalence

LA B m e T R A T e DX T ARIEEL S 1T

Result

SUCCESS
SUCCESS
SUCCESS
SUCCESS

MAME NOT FOUMD Desired Access: Read Attributes, Disposition: Open, Options: Open Reparse Point, ¢

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

NAME NOT FOUMD Desired Access: Read Attrbutes, Disposition: Open, Options: Open Reparse Point, /

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

Pall ettt ol

Detail

Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs\ProcessMonitor.Procmontd exe

Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs‘\ProcessMonitorProcmonGd exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs’\ProcessMonitor.Procmon &4 exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs*ProcessMonitor'Procmon6d exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs*ProcessMonitorProcmon 64 exe

Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs*ProcessMonitor'Procmon6d exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs*ProcessMonitor Procmon 64 exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0
Mame: “Programs‘\ProcessMonitorProcmonGd exe
Type: REG_DWORD, Length: 4, Data: 0
Type: REG_DWORD, Length: 4, Data: 0

[Lt e T Tt o LN | oo T

Showing 1,995,462 of 3,591,990 events (35%) Backed by virtual memory

ll Debugging
_

* Applications that can control (trace) a target executing binary
= Debuggers can create a process and analyze it or attach to a running process

* Process usually executes in the host system
= This is the “typical”, low tech way of dynamically analyzing a program

* Reuses concepts/tools from the engineering process, applied to reverse engineering

* Provide: extensive, interactive control over a process execution flow
= Frequently at the level of opcodes and assembly

= Can be integrated with static analysis tools
 Combining execution information with decompiled code, CFGs, disassembly

REVERSE ENGINEERING

Jodo Paulo Barraca

ll Debugging
. Limitations

* Debugging can be detected and subverted by the target application

= Especially popular in malware and DRM systems

* Target application must be executed in a full hosted environment
= Without isolation measures, this provides a serious security risk

= Remote debugging may be used to circumvent this limitation

* Host system architecture must match the target binary architecture
= Binary is loaded to the host system as a standard process

= No debugging of windows in Linux, ARM or MIPS in x86
= No direct way of debugging shellcode or a binary blob (e.g firmware).

Jodo Paulo Barraca REVERSE ENGINEERING

ll Debugging
. How debuggers work?

* Debuggers explore system calls provided by the operating system
= Debuggers either:
e create a child process, sharing the same address space
» attach to an existing process given that the user has the correct permissions (e.g. root)

= Linux: ptrace

= Windows: provides API for process control
* CreateProcess with specific dwCreationFlags (DEBUG_PROCESS)

* OpenProcess with dwDesiredAccess (PROCESS VM READ, PROCESS VM WRITE,
PROCESS_VM_OPERATION)

* Debuggers may attach to hardware devices providing external debugging
= Used in embedded devices

Jodo Paulo Barraca REVERSE ENGINEERING

ll Debugging
. edb and x86dbg

@ edo - o X ¥ procexp6d.exe - PID: 39308 - Module: procexp64.exe - Thread: Main Thread 28768 - x64dbg = [m] X
File View Debug Plugins Options Hel ” ; . . " - Ly
= = Qebug Flug o0 Help File View Debug Tracdng Plugins Favourites Options Help Jan & 2024 (TitanEngine)
37 re CHE S0 Ya eg o2 fhe LEBR®
[i > _ 3
00007757:7d342453 (41 B 80 00 31 c@ call 0x775f3d65a459 <) Registers 28 Bcou iog ® Breaskpoints ™ MemoryMap [J) Call Stack &3 SEH o Script @l Symbols < Source /O References W Threads B Handles § Trace
BBOR75f:7d34a459 [e8 b2 2d ff ff call 0x7f5f7d33d210 0006000000060060 = 3 35 83EC I8 Sub rsp, it Optiona
. i 6860608080800080 c H i
00087757 :7d3dadSe |e9 6F TF Ff ff jmp Bx7f577d34a3d2 Ban00on0600coon . EERZEA0000] call procexp6s. FFGEFE62180 Hide FPU
000B7f5f:70342463 |0f 1f 44 00 00 nop dword [rax+rax] . 48:83C4 28 add rsp,2s G
0008757 :7d34a468 |84 db test bl. bl £000000000000000 = o B Snp protexpe4. TFEEEFEEICO4 RAX 0O00D0TFFGGFBGIDTS <procexp64.0ptionalHeader. AddressofEntr
BBBB7F5f:7d34ad6a|75 BT jne Bx7f5f7d34a473 B8B67 T fd3c9eaecd cc int3 RBX 0000000000000000
8007 F5T:7d34ad6c |31 FF xor edi, edi 0808008080860660 . cC ints RCX OODODOF1C4244000
800B7T5:7d34a46¢ €8 5d 62 00 00 call 0x7f577d3506d0 60060080080860060 . 48:895C24 10 mov gword ptr rsp+10f, rbx RDX 0DDO7FF66FBG1D7S <procexp64.0ptionalHeader. addressofEntr
B0007f5f:7d342473 |48 8d 3d 7e 11 01 00 lea rdi, [rel @x7f5f7d35b578] ASCII "\nNo subdirect 0000000000000000 . 48:897424 18 mov gword ptr rsp+18),rsi REP 0000000000000000
0BEB7f5f:7d34a47a|e8 91 2d ff ff call Ox7f5f7d33d216 68060008000060680 . 57 push rdi RSP 000000F1C41EF293
8RBT F5T:7d34ad7 T eb eb imp Bx757d34adbe £8060068000660060 . 48:83EC 10 sub rsp,10 RSI 0000000000000000
| 000B7f5f:7d342461 (48 Bb 3d 68 65 01 00 mov rdi, [rel @x7f5f7d3609f0] 5000000000000000 . 5 33C0 Xor eax,eax RDI 0000000000000000
00007f5f:7d34a488 |48 Bd 47 ff lea rax, [rdi-1] 0000000090000000 . FB&1D 3D 33C9 XOr £CX,8Cx
0B0B7F5f:7d34ad8c (48 83 8 fd cmp rax, -3 6806006080860060 . FBE1DSF OFA2 RE 000000F1C 4244000
BOOOTST:7d34ad06 [BF 86 19 fe ff ff jbe Bx7f5fTd3dazat £806000080080680 bt 44:8BCL mov rad,ecx R9 0000000000000000
00R7f5f:7034a496 €9 19 fe ff ff imp Bx7f5f7d34a2bd 60060080080860060 . 45:33D8 xor riid,rild TEFB2487E421 Kk 1
. 44+ 32D2 mov riod edx R10 0ODOTFFB2487E420 ernel32.00007FFB2487E420
0000757 :7d34a49b |49 8b Bd cé 01 08 80 mov rex. [r13+8xlcB] 0000000000000000 . 41181FD 6E74656C xor rad,BCE5746E BT TR O I000000000000
8 3 - E ,6CE5746
60087 T5f:7d34a4a2 (49 Bb 95 b8 01 08 08 mov rdx, [r13+Bx1b8] 8000757434240 . ITIEIED foerecan o A R1Z 000000000DCOCO00
060087757 :7d34a4a0 (49 Bb b5 ab A1 66 B mov rsi, [r13+9xlad] : ! DT S TRrTETTTRITT T
: r r] 0000 44; 8BCB mov rad,ebx
000B7f57:7d342400 (49 Bb bd 98 01 08 0O mov rdi, [rl3+0x198] . 28F0 Taw (oo R14 00D0DDODOODODOOD
: [} 0033 '
| €0067T57:734ad07 e6 44 <O fe ff call 0x7f517d336590 o ooz = 33C9 xor coxl e RIS 0000000CO0000000
| e | s b - Lagw o o s
:7d34adc e - rax+rax . 45: 0BDO gr riod,rsd 7 1D78 i
00087F5f of 1f 44 80 00 0 0008 . hER v RIP 0D007FFEGFBE1DT S <procexp64.0ptionalHeader.AddressofEntr
90087751 48 89 e7 rs) o 0000 . 41:81F1 47656E7S XOr rad,756EE547
00087 75F €8 d8 Bb 00 0O call 0x7f517d34bBbO o . 890424 mov dword prr ss:[frspll,eax RFL’:GS 2000003000000244
60007 5T:7d34adds |49 89 cd mov rl2, rax e . 45:0BD1 or riod,rad £E 3
2 QE 0 SEO DF O
90e07T5T:7d34a4db |48 8b 14 24 mov rdx, [rspl 08060200 895C24 04 mov dword ptr ss:[rsp+all,ebx
80067 5f:7d3daddf (48 BI d6 mov rsi, rdx . mov edi,ecx LE0 TFO IF1
| 600B775f:7d34ade2 (49 B e5 mov r13, rsp empty . 894C24 08 mov dword ptr ss:[frsp+sfll,ecx
BBEOTF5T:7d3dades |48 83 ed fO and rsp, BxfTfiffffffifffio empty . 895424 0OC mov dword ptr s rsp+CJl, edx Lasterror 00000000 (ERROR_SUCCESS) ~
0008775¢:7d34a4e9 (48 Bb 3d 10 7b 01 00 mov rdi, [rel 8x7f5f7d362000] empty ~ 75 5B jne pr‘agexpﬁdaTFIEBBFale-lo . LastStatus 0000034 (STATUS_OBIECT_NAME_NOT_FOUND)
00E07f57:7d34a470|49 8d 4c d5 18 lea rcx, [rl3+rdx*8+0x10] empty 48:830D DB190900 FF | or gword ptr ds:[7FF66FBF37C8],FFFFFFFF
0BEO7f5f:7d34a4f5 |49 8d 55 08 lea rdx, [r13+8] empty 25 FO3FFFOF and eax,FFF3FFO N =
0007570342470 |31 ed xor ebp, ebp empty 48:C705 C3190900 008{mov gword ptr ds: [7FFE6EFBF37C0], 5000 Default (x4 fasteally ~ 5 121 unlocked
8 + 3D CO060100 cmp eax,106C0 = =
00087f5f:7d34a47b|eB bO a9 fe ff call 0x7f5f7d334eb0 oty =i S 1: rcx DDDODOFIC4244000 00DDODFIC4244000 a
00087757:7d342500 |48 Bd 15 €9 a5 fe ff lea rdx, [rel 8x7f5f7d334afo] - empty 2: rdx 0ODOO7FF66FB61D7S <procexp64.0ptionalHeader.AddressofEntryPo
= trer S i rs 000000F1C4244000 D00000F1C4244000
rdi = 0x0000000000000000 2000 seoo eaaog r5p=D0D0D0DF1C41EF938 4: r3 0000000000000D00 0000000D0DD00000
rsp = 0x00007fffd3c9eaed oy MEAD £ 1117 28 "(" 5: [rsp+28] 0000000000000000 0000000000000000
. v
Bookmarks Regist . text:00007FFEEFBEIDTS procexp64.exe: §EIDTS #E1178 <OptionalHeader.AddressofEntryPoint> v
legisters £
" " " " " a) 0 0F1C41EF D0007FFB247F257D| return to kernels2.BaseThreadIni
Woump1 @oumpz @Wowmp3 @Woump4 Poumps @ wath1 lxelLocals & Struct 0000D0FLC 41EF9AD || 0000000000000000
Data Dump @@ Stack @) =
- - = i Hex ASCIT 000000FLC 41EF3AE || 0000000000000000
DB6E T 00007FFB25611000 €€ CC CC CC|CC CC CC CC|40 55 53 56|57 41 54 41| IITTITIIRUSVNATA B | ey
0x00000000D0000000-DX0000000000000000 4 5 ; 2 : pad 000000F1C 41EF9EE || 0000000000000000
4 00007FFB25611010(|56 41 57 48|8D AC 24 90|FE FF FF 48|81 EC 70 02| VAWH.-$.pyyH.1p, 7
a1 000000F1C 41EFSC0 |L0D0D0D0000000000
1€ DODDZEERS5 61020 InnEOl1s gai |(0s g -y 1 (Do sys Spc s z LE 00000DFIC41EFSCE [[00007FFB2566AA48| return to ntdl1.RtlUserThreadsts
: 00007FFB25611030| 01 00 00 OF B7 1A B8 00|02 00 00 41(8B DT Tria) |6 oo oan DO CoRhT] .
; 00007FFB25611040| FO 4C 88 F1|66 3B D8 OF 83 53 F8 0A|00 DOOC TR TEE 6 | [CoD DO o000
, 00007FFB25611050| 08 4C 8D 44(24 50 44 OF B CB ES F1(01 000000F1C 41EF3ED || 0000000000000000
. o 00007FFB25611060| 33 FF 85 CO|78 7A 66 44|89 BD 50 01|00 D EDDE T TE LSS
s£4 || n000000000000000
o 00007FFB25611070| OF 85 31 F8|0A 00 48 8D |44 24 50 66|89 - c DT TR E 5 l6 060 D CODDEEOETE]
popmeRannanor 00007FFB25611080| 48 89 44 24|48 48 8D 54|24 40 48 8D |46 28 66 89| H.DSHH.T$EH.F(T. DOOOLTETIEE 5 | [GoD DT o000
! 00007FFB25611090|5C 24 40 45|33 CO 458 89|44 24 35 48(8D 4C 24 30|\ $@E3AH.DEBH.L$0 D00000ELE 41EFA0D || D0000DO000000000
! 00007FFB256110A0|C7 44 24 30|00 00 00 OL|E8 73 76 01|00 85 CO 78|CD30....BSv...Ax poE T TEL b5 | [DOCE NG Do CONTD
. 3 AA P) /. ;LSOH. T§8H. Ee. DOODODFIC 41EFAL0 || 0DODOAFOFFFFER3D
! COONALERZ SE 11060 H'AH)Efé'Q\t'H;EWB nnnnnnsic 215412 | nonnoanoEFEEFRN
4 00007FFE256110D0 H, EF+LE5T. NAZA
4 -~ NONNTEERZEAT10EN N E
L D stack | Debugger Error Console Command: m s are se d (like assembly instructions): mow e Default =+
paused \| Paused ‘mTBbreakmht'Erm'yb(ealmont’at <procexp64. OptionalHeader. AddressOfEntryPoint > (00007FFE6FBS 1D ime Wasted Debugging: 0:00:00:34

Jodo Paulo Barraca REVERSE ENGINEERING

ll Debugging
_

Debugger set breakpoints which
Trigger SIGTRAP, returning control
to the debugger.

Patching the code with @xCC or using
Hardware breakpoints (through PTRACE)

Jodo Paulo Barraca REVERSE ENGINEERING
EEEEEEEEEEOSOSSSS ' ISSSSCSaaSaSaSTSSE D SSSSSSSSESESESLSLSLSELSLSLSLSLSLSLSSSSSSSSSSESEEEES_

Debugging
. debugger.c

80 int main(int argc, char** argv) 33 void run_target(char* programname)
81 { 34 {

82 pid_t child pid; 35 procmsg("target started. will run '%s'\n", programname);
83 36

84 (argc < 2) { 37

85 fprintf(stderr, "Expected a program name as argument\n"); 38 (ptrace(PTRACE_TRACEME, ©, @, 8) < B) {
86 -1; 39 perror("ptrace");

87 ¥ 40 :

88 41 }

89 child pid = fork(); 42

90 (child _pid == @) 43

91 run_target(argv[1]); 44 execl(programname, programname, 0);
92 45}

93 (child pid > @)

94

95 run_debugger(child pid);

96

2; pipmr{..fwk..}; fork() duplicates the current process. While

99 =1l sharing the same address space.
100 }
181

102 0; One (child) will execute run_target()

103 } .

101 | Other (parent) will execute run_debugger()

Jo3o Paulo Barraca REVERSE ENGINEERING 28

Debugging
\ debugger.c

80 int main(int argc, char** argv) 33 void run_target(char* programname)
81 { 34 {

82 pid_t child pid; 35 procmsg("target started. will run '%s'\n", programname);
83 36

84 (argc < 2) { 37

85 fprintf(stderr, "Expected a program name as argument\n"); 38 (ptrace(PTRACE_TRACEME, ©, @, 8) < B) {
86 -1; 39 perror("ptrace");

87 ¥ 40 :

88 41 }

89 child pid = fork(); 42

90 (child _pid == @) 43

91 run_target(argv[1]); 44 execl(programname, programname, 0);
92 45}

93 (child pid > @)

94

95 run_debugger(child pid);

96

97 { . . .

98 perror("fork™); execl will replace the current process image with
122 , 1 the binary loaded from the storage.
181

igi , 0; In this moment, the processes become different.

104 |

Jo3o Paulo Barraca REVERSE ENGINEERING 29

Debugging

48 wvoid run_debugger(pid_t child pid)

. dEbugger.C o int wait_status;

50

51 unsigned icounter = @;

52 procmsg("debugger started\n");

53 struct user_regs struct regs;
Wait for process to start 54

55

5 wait(&wait status);

57
Get CPU registers S58Y (HIFSTGPPED(WEit_StEtUS)} {

59 icounter++;

60 ptrace(PTRACE_GETREGS, child pid, 8, ®s);
61 unsigned instr = ptrace(PTRACE_PEEKTEXT, child pid, regs.rip, 9);
62
63 procmsg("icounter = %u. RIP = 0x%08x. instr = 0x%08x\n",
. . . 64 icounter, regs.rip, instr);
Single Step through one instruction (ASM) 65
66
67 ¥ (ptrace(PTRACE_SINGLESTEP, child pid, @, ©) < @) {
68 perror("ptrace™);
b9 N
70 }
71
Wait for instruction to finish 72
73 wait(8wait status);
74 }
75
76 procmsg("the child executed %u instructions\n", icounter);

Jo3o Paulo Barraca REVERSE ENGINEERING 30

J Sandboxing
_

e Sandboxing improves the control that debuggers provide
= Creation of a distinct execution environment

* Different libraries? Restricted view of the filesystem (minimal access to files)

= |solate some actions, providing some safety to analyze malicious applications

* Implementation: lightweight virtual machines or namespaces/containers
= Supported my mechanisms of the Operating System or additional tools

= Tools: sandboxie, pyrebox, panda

* An agent monitors interactions of the application inside the environment and

may allow instrumentation
= File access, network communication

= Remote debugging

Jodo Paulo Barraca REVERSE ENGINEERING

] Emulators

* Emulators are common backends for secur sandboxes
= May provide much better isolation as the guest and host environments are distinct

* Kernel is not shared, hardware is emulated

= Tools: QEMU, Virtualbox, Vmware

* Emulation types
= Full system emulation

= User mode emulation

Jodo Paulo Barraca REVERSE ENGINEERING

] Emulators
. User Mode Emulation

* Launches a processes directly, but on a restricted environment
= Process may be compiled for one CPU and executed on another CPU

= Address space is restricted, such as filesystem and libraries available

= |nteraction with Host OS is mediated by the emulator

* Emulator process native CPU instructions (emulation/translation) and:
= Provide means to translate syscalls from guest to host OS

= Understand intrinsic characteristics such as clone
* Clone is used to spawn new processes and will require the creation of a new emulation environment

= Handle signals between analyzed binary and the host system

* May provide integration with debugging tools

Jodo Paulo Barraca REVERSE ENGINEERING

] Emulators
. User Mode Emulation with QEMU

e QEMU allows user mode emulation as long as the OS is kept the same

e What it does:

= Machine code translation from any CPU to any CPU
= Syscall mapping
= Data structure conversion (Bit-order and Bit-width conversions)

= Extensive tracing capability to the level of Micro Ops

* Provides a gdbserver interface for interaction with GDB

* Usefulness: reverse engineering applications compiled to other architectures

Jodo Paulo Barraca REVERSE ENGINEERING

[System Overview J

ARM Source Code

v

(Arm-linux-gnueabihf-gccj

Compiler

[ARM Linary j

ercutiun Results
Jodo Paulo Barraca REVERSE ENGINEERING 39

] Emulators
. Full System Emulation

e Basically: a full-blown virtual machine
= Emulates a highly configurable set of hardware, including embedded devices

= Maps interactions to Host resources (screen, disk, network)
= RE aware software tools expose debugging interfaces (usually to gdb)

* Provides the best level of isolation
= All accesses are mediated by the emulator, reducing the attack surface to emulator components

= Allows analyzing other binaries besides standard executable files
* Firmware, MBR, UEFI

 Malware frequently try to detect Virtual Machines, emulators and debuggers...
= With variable sophistication

Jodo Paulo Barraca REVERSE ENGINEERING

ll Remote debugging with emulators
. gdb and gdbserver

gdb can debug remote applications
= |t can even debug remote kernels and firmware

= Why? Consider embedded devices, software inside an emulator

gdbserver is launched on the target system, with the arguments:
= Either a device name (to use a serial line) or a TCP hostname and portnumber, and the path and filename of the executable
to be debugged

= |t then waits passively for the host gdb to communicate with it.

gdb is run on the host, with the arguments:
= The path and filename of the executable (and any sources) on the host, and

= A device name (for a serial line) or the IP address and port number needed for connection to the target system.

Alternative: the remote application is compiled with a stub that provides a gdbserver interface
when the application is launched

Jodo Paulo Barraca REVERSE ENGINEERING

Example

Reversing an ARM binary

root@ pc ftmp/er/arm
"

[

Jodo Paulo Barraca

/tmp/er/arm
fcrackme-dyn-arm
GNU gdb (Debian 10.1-1.7) 10.1.90.20210103-git
yright (C) 2021 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://
enses/gpl.html>
This is free software: you are free to chans ind redistribute
it.
There 15 NO WARRAN the extent permitted by law.
ype "show copying” and "show warranty” for details.
This B was configured as "x86_64-1linux-gnu”
Type "show configuration" for configuration details.
For bug reporting instruction please see:
<https://v] i
Find the GDB manual and other documentation resources online a

5

W . Enu. gdb/bugs />.

p://wa.gnu.org/software/gdb/documentation/>.

for commands related to "word

A

using localhost:l

target does not su ' attempt
from local fil

in

YEVERSE ENGINEERING

Jll Example
. unknown.bin

e Remember the unknown.bin file?
= Well... looks like a PDF (is a PDF)

= but$ file unknown.bin returns “unknown.bin: DOS/MBR boot sector”

* What we may extrapolate from that:
= Seems to be a DOS/Master Boot Record (Master boot record — Wikipedia)

= DOS was only released for i386 (16bits and 32bits)
= gemu-system-1386 may boot it if used as a hard disk or floppy disk

Jodo Paulo Barraca REVERSE ENGINEERING

https://en.wikipedia.org/wiki/Master_boot_record

Jll Example
. unknown.bin

 How to address such files?
= Binary files other than ELFs (or PE or other similar) obey to a fixed set of rules

= |tis required to check the datasheets and gather information required to load the file.

= |mportant:
e CPU used, CPU mode, relevant or required peripherals: to know how to decode the binary instructions

* Program Entry Point: to know where the program starts, and where disassembly should start

* From a Master Boot Record we may know:
= MBRis loaded to address 0x7C00

= MBR code runs in Intel x86 Real Mode (16bits)

= There are quite a few limitations and assumptions: IBM DOS 2.00 Master Boot Record (pcministry.com)

= There is no OS running. Input/Output must use BIOS Interrupts

Jodo Paulo Barraca REVERSE ENGINEERING

https://thestarman.pcministry.com/asm/mbr/200MBR.htm

Jll Example

. Loading the unknown.bin in ghidra

%2 Language x
ﬁj Import /C:/Users/user/Documents/OneDrive - Universidade de Aveiro/U4 [e
m—g{ Variant Size Endian | Compiler
tricore TC176x 32 litte default ~
Format: | Raw Binary tricore TC29% 32 litte default
Va50 El, EZ2, E2M 32 litte default
Language: | Protected Mode default
Destination Folder: |C0f'ltE|"|t:,f- Real Mode default
System Mana... default
Program Mame: |ur1knnwr1.bir1 default 32 little Borland C++
dafault 37 _litHa Nzl
[l Fiter: | EEE
Description
Flease select a language. |1r1tel,-'AMD 15-hit x85 Real Mode
CK Show Only Recommended Language/Compiler Specs
[ok || cancd |
Filter:
v I
| T ElCARY | -
¥ status: ide
E Client debugger: nfa
Client program: n/a

Jodo Paulo Barraca

REVERSE ENGINEERING

Jll Example
. Loading the unknown.bin in ghidra

&P Import /C:/Us 2 Options X YUA/ Discipl...

: sk e -
] e
e i =
Destination Folde III
0 ::
Program Mamg
o Apply Processor Defined Labels [«

Anchor Processor Defined Labels [

o] ol |

Filter:

Jodo Paulo Barraca ENGINEERING
EEEEEEEEEEEOSOSTSTSSSaLaSTSTSS e HESSEESHEEEEEHEEGESEGEEGEEEEESSSS,-§

. Exa m ple If we state that Ox7C00 has code, looks like we have
something
e ° ° °
. Loading the unknown.bin in ghidra
i/ i
ff RRAM ff RIM
// ram:0000:7c00-ram:0000:ac0l // ram:0000:7c00-ran:0000:2c01
i N i
assume DF = O0x0 (Default) assume DF = 0x0 (Default)
0000:7c00 25 29 25h % 0000:7c00 25 ff ff FHB L¥, OxfEff
0000:7c0l £f 22 FFh — 0000:7c03 eb 57 JMP LAB 0000 Tc5c
0000:7c02 £f 27 FFh 0000:7c05 Oa 22 0Zh
0000:7c03 ek 22 EBh Q000:7cod 00 27 0oh
0000:7c0d4 57 27 57h W 0000:7c07 00 27 00R
0000:7c05 Oa 77 0hh 00o00:7cOg 00 27 00h
0000:7cog 00 27 0ok Q000:7c0g 00 27 0ok
0000:7c07 00 77 00h 0000:7cha 00 27 aoh
0000:7c08 00 22 00h 0000:7cOb 00 22 00h
0000:7c09 00 22 00h 0000:7c0c 00 22 00h
0000:7ec0a 00 22 0ok Q000:7cOd 00 27 0ok
0000:7cOb 00 77 00h 0000:7che 00 27 aoh
0000:7c0c 00 27 00k Qoo0:7e0f 00 27 00h
0000:7c0d 00 22 00h 0000:7cl0 00 22 00h
0000:7ec0e 00 22 00k Q000:7cll 00 27 0ok
0000:T7cOf 00 77 00h 0000:7cl2 00 27 aoh
0000:7cl0 00 22 00h 0000:7cl3 00 22 00h
0000:7cll 00 22 00h 0000:7cld 00 22 00h
0000:7el2 00 22 00k Q000:7cls 00 27 0ok
0000:7cl3 00 22 00h 0000:7clé 00 22 00h
0000:7cl4 00 22 00h 0000:7cl7 00 22 00h
0000:7cl5 00 22 00h 0000:7cl8 00 22 00h
0000:7ecle 00 22 0ok Q000:7cls 00 27 0ok
0000:7c17 00 27 00k Qoo0:7cla 00 27 0oh
0000:7cld 00 22 00h 0000:7clb 00 22 00h
Jo&o Paulo Barraca e - REVERSE ENGINEERING

]l Example
. Loading the unknown.bin in ghidra

|-> LAB 0000 _7cS5c EEEF[1]: 0000:Tc03 ()
0000:7c5c 31 cO XOR B, B¥
0000:7c5e fe 43 MOV D5, X
0000:7ce0 30 42 HOR DL, DL
0000:7cE2 cd 13 INT 0x13
0000:7ced4 0f 82 14 01 Jc LRE 0000_7d4ES
0000:7cE8 31 co XOR CX,CK
LAE 0000_Tcéa KEEF[1]: 0000:7cTc(])
0000:7céa bk 85 Tc MOV BX, 0x7cE5
0000:7céd 01 cb LDD BX,CK
0000:7c MOV L¥,word ptr [BX]=>LLB 0000 7cE5
0000:7c71l 30 ci HOR AL,CL
0000:7c73 83 07 MOV byte ptr [EX]=>LAB 0000_Tcd5,EL
0000:7c75 83 cl 01 LDD CX,0xl
0000:7c78 81 fkb fe 7d CMP BX, 0x7dfe
0000:7cTe Te ec JLE LEB 0000 Tcea
0000:7cTe &b 05 JMF LRE 0000_7cED —

in range(@x7dfe - 0x7c85):
Jodo Paulo Barraca r‘am[@X7C85 + 1] N= l

Example

Loading the unknown.bin in gemu with gdb

root@ pc /tmp/mbr
i 1M
ver,nowait
WARNING: Image fofmat was not specified for "unknown.bin®' and probing guessed raw.
A . L t C iz goeroue for raw images, write operat

Launch qemu-syst-em-i86 with a-
gdbserver socket and monitor socket

unknown.bin telnet:127.0.0.1:2222,s5er

e restrictions.

QEMU [Paused]

Machine View
SeaBI0S (version 1.14.0-2)

iPXE (http:rripxe.org) 00:03.0 ChAO® PCIZ.10 PnP PMM+00000000+00000000 CAHOO

Booting from Hard Disk...
Boot failed: could not read the boot disk

Booting from Floppy...

Execute GDB
Connect to the gdbserver
Do some initialization to set the CPU
and display layout

root® pc /tmp/mbr
gdb init real mode.txt

GNU gdb (Debian 10.1-1.7) 10.1.90.20210103-git

Copyright (C) 2021 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying” and "show warranty” for details.

This GDB was configured as "x86_64-Linux-gnu”.

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

<https://www .gnu.org/software/gdb/bugs />.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”.
Type "apropos word” to search for commands related to "word”™.

warning: A handler for the 05 ABI "GNU/Linux" is not bullt into this configuration
of GDB. Attempting to continue with the default 18886 settings.

The target architecture is set to "i8@86".

warning: A handler for the 05 ABI "GNU/Linux" is not bullt into this configuration
of GDB. Attempting to continue with the default 18886 settings.

Remote debugging using localhost:1234

warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
[STACK]-——-

Q000 0000 Q000 Q000D 0QQD Q00D Q0OQ 0OOOQ

00OU\QQ0 0000 00BD 00QD Q000 0DBD 0000

[DS:SI]—-

00000000: 00 00 UO~Q0 00 00 00 00 0O-@Q

00000010: 20 00 00 00 UO~GQQ 00 00 00 00

Q00QR020: 29 00 00 00 Q0 09 UD~AQ 00 00

00000030: 00 0D 00 00 00 00 00 00 VUGG

[ES:DI]—-

000Q0000: 09 00 00 00 @0 90 00 0O 00 @0

00000010: @0 00 0@ 00 @0 90 00 00 00 @0

Q00QR020: 09 00 00 00 Q0 20 00 00 00 @0

00000030: 00 0D 00 00 @0 00 0D 00 00 00

It runs and we have
control in GDB

Example

Loading the unknown.bin in gemu with gdb

root@® pc /tmp/mbr
i 1M

ver,nowait
WARNING: Image format was not specified for "unknown.bin' and probing g
Automatically detecting the format is dangerous for raw images
ions on block ® will be restricted.

Specify the 'raw' format explicitly to remove the restrictions.
a

unknown.bin telnet:127.08.08.1:2222,ser

uessed raw.
write operat

¥

QEMU [Paused]

Machine View
SeaBIDS (version 1.14.0-2)

iPXE (http:rripxe.org) 00:03.0 CAGO PCIZ.10 PwP PHM+00000000+00000000 CAOO

Booting from Hard Disk...
Boot failed: could wnot read the boot disk

Booting from Floppy...

Breakpoint
Breakpoint

Cont ll|ll‘% .

D@de FOOO 0000 0000 6F5E 00
822B 0000 0000 0000 00OD 0O

00000000 FF @@ F@ 53 FF
foo000l0: FF @2 F@ FF
00000020: AS FE @@ FO 87 E9
00000030: D4 00 FO D4

00000000: FF @2 F@ FF
00000010: FF 00 FO@ FF
DO0OO@20: AS FE @@ FO 87 E9
00000030: D4 00 FO D4

Approach:
Set a breakpoint to 0x7c85
Continue (let it decrypt)

[STACK]-—-
00 S1EA 0000
00 S1EA 0000
D5:5I]-——-
20 FO C3 E2
20 FO 53 FF
20 FO 34 D4
20 FO 57 EF
[ES:DI]—-
00 FO C3 E2
20 FO 53 FF
20 FO 34 D4
20 FO 57 EF

2000 BX:
2000 DI:
2000 DS:

JDFF Cx:
0000 SP:
2000 ES:

017B
6F00
o000

7C85 EIP:0QQQ7CBS

:IP: @@@@:7C8B5 (@=@7C85)
:SP: QOOO:6F00 (@=06F00)
BP: Q000:0000 (0=00000)
<@> DF <@» IF <1> TF
<@> VIP <@> VIF <@> AC

[|
[T =]

wm
wm

=
L)

]

mowv ax,0
mowv
Xor
mowv
mowv
mowv
mowv
mowv
int
jb

Breakpoint 2,

0

[CPU 1—
Dx: 0000
EP: 0000
S5: pooo

<@> 5F <@>
<@> WM <@>
[CODE 1]
x7ed

ZF <@> AF <@>
RF <@> NT <@>

PF <>
I0PL <@>

CF <@>

Jll Example

Loading the unknown.bin in gemu with gdb

Connect to the QEMU Control socket
Dump physical RAM (1MB)
This file can be loaded in ghidra and should contain
the decrypted code! ©

Can you recover the flags only with RE? (*)

L

localhost 2222
Trying ::1 ...
Trying 127.9.08.1...
C ed to localhost.

character 1is

QEMU 5.2.0 monitor - type "help' for more information

(gemu) pmemsave @ 1048576 mem-at-7c85

CEE

(*) there may be some additional steps involved. ©
Analyze CFGs, rename, retype and combine with dynamic analysis whenever relevant
Enjoy the ASCII art and praise @zezadas for the great work with this binary.

Jodo Paulo Barraca

ll Dynamic Binary Instrumentation (DBI)
. What are they

* DBI system as an application virtual machine that interprets the ISA of a specific platform
= usually (but not always) coinciding with the one where the system runs

= offering instrumentation capabilities to support monitoring and altering instructions and data from an analysis tool
component

= Up to the level of a single instruction

* DBI systems expand standard Dynamic Binary Analysis tasks by
= Fine grained monitoring capabilities

= Full control over data and instructions, potentially increasing Reverse Engineering Scope

* Uses
= Measure performance, Detect vulnerabilities, Force code execution, Fuzz binary programs at the scale of a group of
instructions

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Instrumentation (DBI)

W caveats

* DBl is vulnerable to specific attacks targeting the emulator

= Purpose: avoid the use of emulators or induce incorrect results

= Exploit the fact that DBI tools are slow

= Exploit the fact that the system is emulated and differs from a real system

* Some approaches

= Extensive loops Timing measurements

= Timing measurements

= Testing for system specific behavior

Jodo Paulo Barraca

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143

for (n = 0; n < 2000000; ++n)
{
EnterCriticalSection(& riticalSection);
mw_junk_0();
v6[1] = (int)vé;
v6[0] = 707220816;
*(_DWORD *)sz = dword_41A4F4;
CharUpperi(sz);
for (ii = @3 ii < 5; ++ii)
{
v6[2] = -199066008;
v8 = 0;
}
LeaveCriticalSection(& riticalSection);
}
DeleteCriticalSection(&CriticalSection);

3

ll Dynamic Binary Instrumentation (DBI)

3 What are they T

* Instrumentation

* |nsert Code /
\

* Dynamic Binary Instrumentation
= “Running” Code

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Instrumentation (DBI)

B What are they T

* Instrumentation
= |nsert Code

* Dynamic Binary Instrumentation
= “Running” Code SeelE

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Instrumentation (DBI)

3 What are they ﬁ
* Instrumentation :

= Insert Code /
* Dynamic Binary Instrumentation
= “Running” Code SeelE

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Instrumentation (DBI)
. How they work?

* Rebuild a program binary code using some JIT technique
= |nsert trace points and hooks for inspection

= Divert execution to additional user specified functions

= Monitor access to memory regions

e Potentially triggering callbacks on access

= May reimplement access to 10s or even syscalls and interrupts

= May create a fully Emulated Execution Environment

e Can be combined with an Emulation platform such as QEMU or Unicorn (a fork from QEMU)

* Popular tools: valgrind, DynamoRIO, Intel PIN, Dynlinst, Qiling, Frida

Jodo Paulo Barraca REVERSE ENGINEERING

ll Dynamic Binary Instrumentation (DBI)

DBI PRIMITIVES

APPLICATION DOMAIN INSTRUCTIONS SYSTEM | LIBRARY | THREADS & CODE EXCEPTIONS
MEMORY R/W | CALLS/RETS | BRANCHES | OTHER | CALLS CALLS PROCESSES | LOADING | & SIGNALS

CRYPTOANALYSIS v v v v

MALICIOUS SOFTWARE ANALYSIS v v v v v v v v v

VULNERABILITY DETECTION v v v v v v

SOFTWARE PLAGIARISM v v

REVERSE ENGINEERING v v v v v v

INFORMATION FLow TRACKING v v v v v v

SOFTWARE PROTECTION v v v v v v v v v

Daniele D’Elia et al, SoK: Using Dynamic Binary Instrumentation for Security, AsiaCCS, 2019

Jodo Paulo Barraca REVERSE ENGINEERING

il DBI with Qiling
. DBI tool that can perform:

* Emulation: Executes binary code step by step, replacing instructions
* Binary instrumentation: allows injection of user specified code

* Cross-platform and cross-architectural analysis: analyze one
architecture or OS on another

* Sandboxing: |/O is redirected to fake devices (files, sockets)

* On raw binaries: used to analyze blobs from binary devices or
shellcode

Jodo Paulo Barraca REVERSE ENGINEERING

il DBI with Qiling
. Emulation

e Syscalls and interrupt are implemented in python
= Program calls syscall/interrupt

= Qiling invokes handler in python, which mimics a standard system
= Implementation can be overridden by the user

* Host OS is never called, and result is provided by Qiling
= Advantages:

e Great control over the execution
e Greatisolation
= Disadvantages:
* Not all calls are implemented
* Behavior mimics an ideal system and may deviate from reality

Jodo Paulo Barraca REVERSE ENGINEERING

il DBI with Qiling
. Instrumentation

* User can define hooks to triggering callbacks on an event
= Because an emulator is translating code in real time, instruction level hooks are possible

e Example
= Code execution reaches a specific address

= An address is written or read
= A function is called, or is leaving

= An instruction is executed

Jodo Paulo Barraca REVERSE ENGINEERING

il DBI with Qiling
. Cross Platform and Cross Architecture

* Binary code is emulated, allowing cross architecture execution
= Target architecture instructions are compiled to native instructions

* Because all syscalls and interrupts are emulated, host platform can differ

from target platform
= As Qiling is based on Unicorn (Qemu), a wide range of possibilities is available

Jodo Paulo Barraca REVERSE ENGINEERING H

il DBI with Qiling
. Loading an EIf

* Qiling has several loaders giling
= MBR def sandbox(path, rootfs):
i} PE, ELF, MachO gimugﬂ.lng(path, rootfs)

= Unstructured binary (shellcode)

__name__ ' _main__"':
sandbox(['./hello"], '.'

* Loader will make code available to be emulated on a secure rootfs
= Calls to interrupts and syscalls are implemented in python

Jodo Paulo Barraca REVERSE ENGINEERING

] brk(input = 8x8)

1 uname (address = 0x806000000d960)

1 access(path = @x7ffff7dfagbe, mode = oxu)

1 openat(fd = exffffffoc, path = ex7ffff7df7b67, flags = 0x80000, mode = 8x8)
1 openat(fd Bxffffffoc, path = O6xBOAEAABAcefd, flags 8x80000, mode = 8x8)
1 stat(path @x80000000cefe, buf_ptr = e@xse0000008cfan)

1 openat(fd exffffffoc, path = 0x800000080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd exffffffoc, path = 0x800000080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd exffffffoc, path = 0x800000080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd Oxffffffoc, path = 0x8000008080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd Oxffffffoc, path = 0x8000008080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd Oxffffffoc, path = 0x8000008080cefd, flags = OxB80008, mode = 8x8)
1 stat(path 0x80000000cefe, buf_ptr = exs80000088cfan)

1 openat(fd = exffffffoc, path Oxs00eeeeecefe, flags = 0x80000, mode = 8x0)
1 read(fd = @x3, buf = BxBBBBBBBBdBfB len = Bx3uB)

1 fstat(fd = Bx3, buf_ptr = BxBBBBBBBBcfaB)

1 mmap(addr = e@x8, length = @xlcu5e08, prot = @x1l, flags = 0x882, fd = 6x3, pgoffset = 8x8)
]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1

]

r

]

mprotect(start = @x7fffb7dfbeee, mlen = 8x196000, prot = 0x8)
ex7fffb7dfbeee, length = @xlubeee, prot = @x5, flags = @x812, fd = 6x3, pgoffset = 8x25000)
OxTFffb7fuee00, length
mmap({addr = ex7fffb7f918688, length
mmap(addr = ex7fffb7f97888, length
close(fd = 8x3)
mmap(addr = 8x8, length = @x2e800, prot = 8x3, flags = ex22, fd
arch_prctl(ARCHX = ©x1082, ARCH_SET_FS = ex7fffb7fobfua)
OxTFffb7f91000, mlen
8x555555557080, mlen 8x1ee8, prot
OxTFFFf7dffeee, mlen 8x1686, prot
fstat(fd 8x1, buf_ptr = 6x800000008d630)
ioctl(fd = @x1l, cmd = @x5U81, arg = 0x80000000d598)
brk(input = @x8)
brk(input = @x55555557cPe8)
write(fd = 8x1, buf = 8x55555555b2a®, count = 8x6)
1o [!] Ox7fffbT7e9bco8: syscall gl_syscall_clock_nanosleep number = 8xe6(238) not implemented
write(fd = 8x1, buf = 8x55555555b2a®, count = 8x6)

mmap(addr
mmap(addr

@xuagee, prot = 6xl, flags = @x812, fd = @x3, pgoffset = @x178000)
Bx6000, prot = 8x3, flags = 6x812, fd = 8x3, pgoffset = Oxlba®es)
x3588, prot = 8x3, flags = €x32, fd = Oxffffffff, pgoffset = Ox0)

OxfFFfffff, pgoffset = Bx8)

Bx1)
Ax1)
Bx1)

mprotect(start
mprotect(start
mprotect(start

6x30088, prot

Jodo Paulo Barraca

exit_group(exit_code = 8x8)

il DBI with Qiling
. Overriding a library function

giling

. . . giling.os.const
* Functions can be overridden with custom time
Imp|ementatlon5 def my_sleep(qgl):
= Code can access arguments of basic types (Strings, 2£ﬁ§ndsql'jiéﬁ??i‘éi;z:ﬁl—params({ seconds -
Ints, Floats) print(f"Sleep: {seconds}")
seconds 16:
= |nside function, other external functions can be called print("QL: Limiting sleep to 1@s")

time.sleep(10)

= Entire set of registries and memory can be

manipulated time.sleep(seconds)

- : : ; : sandbox(path, rootfs):
Return is provided to the calling function to be e e e e T e
emulated on a secure rootfs gl.set_api('sleep', my_sleep)

. . . ql.run()
= Calls to interrupts and syscalls are implemented in

python __name__ '__main__':
sandbox(["./hello"'], '."

Jodo Paulo Barraca REVERSE ENGINEERING

	Slide 1: Binary Analysis – Emulation and Instrumentation
	Slide 2: Binary Analysis Process (cont.)
	Slide 3: Dynamic Binary Analysis
	Slide 4: Dynamic Binary Analysis
	Slide 5: Dynamic Binary Analysis
	Slide 6: Dynamic Binary Analysis
	Slide 7: Considerations
	Slide 8: Considerations
	Slide 9: Considerations
	Slide 10: Considerations
	Slide 11: Considerations
	Slide 12: Considerations
	Slide 13: Considerations
	Slide 14: Considerations
	Slide 15: Considerations
	Slide 16: Considerations
	Slide 17: Dynamic Binary Analysis of Binaries
	Slide 18: Tracers
	Slide 19: Tracers
	Slide 20
	Slide 21
	Slide 22: Debugging
	Slide 23: Debugging
	Slide 25: Debugging
	Slide 26: Debugging
	Slide 27: Debugging
	Slide 28: Debugging
	Slide 29: Debugging
	Slide 30: Debugging
	Slide 35: Sandboxing
	Slide 36: Emulators
	Slide 37: Emulators
	Slide 38: Emulators
	Slide 39
	Slide 41: Emulators
	Slide 42: Remote debugging with emulators
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Example
	Slide 47: Example
	Slide 48: Example
	Slide 49: Example
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Dynamic Binary Instrumentation (DBI)
	Slide 54: Dynamic Binary Instrumentation (DBI)
	Slide 55: Dynamic Binary Instrumentation (DBI)
	Slide 56: Dynamic Binary Instrumentation (DBI)
	Slide 57: Dynamic Binary Instrumentation (DBI)
	Slide 58: Dynamic Binary Instrumentation (DBI)
	Slide 59: Dynamic Binary Instrumentation (DBI)
	Slide 61: DBI with Qiling
	Slide 62: DBI with Qiling
	Slide 63: DBI with Qiling
	Slide 64: DBI with Qiling
	Slide 65: DBI with Qiling
	Slide 66
	Slide 67: DBI with Qiling

