
Android – Dynamic Analysis
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Dynamic Analysis

2Add a footer

Static Analysis: Open
the application and
deduct how it works

Researcher must deduct the Data Flow

External Data or Actions may change the application behavior

• Change the code path

• Inject instructions

Issues may be found on the sequence of events, or on the state
machine

Dynamic Analysis: Observe the application while it is running, allowing
to obtain information about the dynamic characteristics.

REVERSE ENGINEERING

Dynamic Analysis

• Look into specific aspects of an application, while it is executing

• Objective: Observe dynamic behavior of the application and
determine the role of each code

• What can be analyzed
ꟷ Messages exchanged with external servers (REST APIs, Web Sockets)

ꟷ Intents sent or received

ꟷ Logs printed (errors, debug messages)

ꟷ Files accessed/created

ꟷ Memory Content

ꟷ With code instrumentation: calls to methods, especially Android API methods

3

REVERSE ENGINEERING

Logs

• Android log can be used to dynamically analyze relevant aspects of
application execution
ꟷ Explicit log entry produced by the application or by system components

ꟷ Implicit logs produced with errors

• Exceptions produce stack traces which expose call flow

ꟷ Some system events

ꟷ May be used to detect leaks

$ adb logcat

4

REVERSE ENGINEERING

Network MiTM

• Interactions with external APIs can be intercepted and analyzed
ꟷ Useful to identify communication with domains with low reputation

ꟷ Useful to identify unprotected communications
• Especially dangerous if dealing with authentication, private data or download of dynamic components

• Black box approach: observe how the app behaves
ꟷ We may simply observe

ꟷ … or we manipulate/filter traffic

5

REVERSE ENGINEERING

Network MiTM

• Packet Dumps
ꟷ run applications and capture traffic with a packet sniffer

ꟷ Non encrypted APIs can be analyzed with ease
• The endpoint IP address may constitute an indicator by itself

• Communication with flagged domains, validation that a service is invoked

ꟷ Using wireshark (androiddump)

• Traffic flows
ꟷ run applications with a HTTP/HTTPS proxy configured to intercept all traffic

ꟷ injecting a CA Certificate in the device allows generating custom certificates for secure
endpoints

6

REVERSE ENGINEERING

Traffic Flows

• Using an HTTP proxy with
Active TLS interception
capability
ꟷ Proxy will generate certificates for all

hosts accessed

ꟷ Certificates are signed by a single CA

ꟷ CA must be installed to the device

7

Using mitmproxy, without CA installed
Alternatives: Charles, ZAP, Burp

REVERSE ENGINEERING

Trusted Certificates

• Standard X509 certificates in PEM format
ꟷ Preinstalled by the manufacturer

ꟷ Cannot be changed by users

ꟷ Users can add custom certificates, but they are frequently ignored by the applications

• On an Android system, trusted roots are at /system/etc/security/cacerts
ꟷ Folder with PEM certificates

• /system partition is read only on release devices
ꟷ In recent versions of Android the same is also true for the emulator

ꟷ Alternative: mount a tmpfs at the certificate location

• But changes are lost on reboot

8

REVERSE ENGINEERING 9

Using mitmproxy, with CA
installed

REVERSE ENGINEERING

Network MITM - Limitations

• Packet dumps are limited to unprotected text and metadata
ꟷ Again… it is still relevant as it may produce a valid indicator

• Traffic flow analysis is limited to devices where a CA can be injected
ꟷ And where the APP will not use custom CA Certificates

ꟷ And where the APP will not use Certificate Pinning

10

REVERSE ENGINEERING

Certificate Pinning

• Applications put constraints on the certificates used for
verification (Trusted Roots)
ꟷ They fix (Pin) a certificate/pub key/hash to a hostname

ꟷ Validation of the host authenticity (in TLS) will also include this additional constraints

• Impact
ꟷ A Trusted Root can be injected but it will be ignored
• Application will simply not use it

• Or the application will have additional checks with detect the injection

11

REVERSE ENGINEERING

Certificate Pinning - Approaches

• Applications extend the X509TrustManager, overriding the checkServerTrusted
method, with custom checks
ꟷ E.g. the Certificate/Public Key/hash is hard coded, and this value is used to validate the certificate

• Using a KeyStore with a predefined list of certificates, ignoring other sources
ꟷ Pins the host certificate

ꟷ Pins an intermediate Certification Authority

ꟷ Pins a Root Certification Authority

• Pinning may create issues for developers as changes to certificates or PKI must
be reflected to the applications
ꟷ Soft Fail: just let the application work, even if with limited functionality

ꟷ Hard Fail: an update is forced for the application to work

12

REVERSE ENGINEERING 13

Applications using Pinning will not
communicate through a proxy

REVERSE ENGINEERING

Certificate Pinning - Circumvention

• If restricted KeyStores are used: use an emulator or rooted device
ꟷ Enables free manipulation of the keystores, injecting custom certificates

ꟷ Inject certificates to the system keystores

• If Pinned with hard coded information: modify the application
ꟷ Unpack the application

ꟷ Edit the code, changing the Pin or removing it
• smali may be enough and full decompilation to java is not required

ꟷ Repack and install the application

14

REVERSE ENGINEERING

Dynamic Code Instrumentation

• Applications are implemented with functions
ꟷ Functions have addresses that may be determined
• Or subverted

ꟷ Java uses further abstractions when using native code

• Creating strict interaction points towards which is possible to access the external world

• This enables the possibility of manipulating symbols/addresses to
instrumentalize code
ꟷ Observe internal structure of the program flow

ꟷ Inject new code by replacing the implementation of a function represented by a
symbol

15

REVERSE ENGINEERING

Dynamic Binary Instrumentation - Why

• Requests to APIs are further encrypted, signed or MITM is not available
ꟷ MITM and packet sniffers are useless

• Application has obfuscated values in RAM, created dynamically,
received from the network
ꟷ Static analysis and Decompilation is useless

• Code is loaded dynamically with objects received
ꟷ Static analysis and Decompilation will have no code to analyze

• Many values are hard coded (keys, urls…)
ꟷ Patching takes too long and becomes expensive

16

REVERSE ENGINEERING

Custom Signatures are used

POST /login HTTP/1.1
Host: social.io
Proxy-Connection: keep-alive
Content-Length: X
Accept: text/html, application/xhtml-
xml,application/xml;q=0.9,image/webp,*/*,q=0.8
Origin: http://social.io
Content-Type: application/x-www-form-urlencoded
Cookie: SessionId=O+qxnaYZLjpnLwHBcKmRcTexTWk=

username=john&password=xpto&signature=2rf+roJPEdCOSL0XXusHBcA0BGk=

17

http://social.io/

REVERSE ENGINEERING

Data is encrypted

POST /login HTTP/1.1
Host: social.io
Proxy-Connection: keep-alive
Content-Length: X
Accept: text/html, application/xhtml-
xml,application/xml;q=0.9,image/webp,*/*,q=0.8
Origin: http://social.io
Content-Type: application/x-www-form-urlencoded
Cookie: SessionId=O+qxnaYZLjpnLwHBcKmRcTexTWk=

authData=3NH71S+7P8YeafgnBvXzJ1RzJdXm51VNPQYMWFiIMl8ZNr7+vGDNTcms8LHDUaC/lK2xRF/L
bPMwQ0pB+ZyB6PfYNaf5fIh/IGdlQZJrgXXgDDT7Mn2d259vzcdmBA3pJ04cLxGNnLSvdorYF+mLN7yik
zEagUWGfQe1nYzu3OT3947kqSORQuc4PTzuFKUXlolCcuVYvr5gt6ykfk9ACGVwyywGBG3OeFxNKi0kme
iBYxB8EJlmCF/xojM59gcGDv61ytidhVs=

18

http://social.io/

REVERSE ENGINEERING

Many others
• Retrieving a call flow

ꟷ Map which methods are used, and what is the actual code execution flow

• Identify arguments of Android API methods
ꟷ Log traffic and calls

ꟷ Allows intercepting data even with encrypted connections
• Interception happens before data is encrypted

• Modify arguments of Android API methods
ꟷ Fuzzing
ꟷ Filter/modify data to trigger additional behavior

ꟷ Trigger custom events

• Circumvent protections to enable further analysis

• Application is obfuscated and it is difficult to obtain the actual algorithm

19

REVERSE ENGINEERING

FRIDA – How?

• Set of tools (framework) for Dynamic Code Instrumentation
ꟷ Instruments the Application Code with hooks

ꟷ Not specific for Android, and may be used on other applications and Operating Systems

• Allows:
ꟷ Tracing network communications at the method level

ꟷ Understand how the application behaves

ꟷ Manipulate the methods called, arguments and return codes

ꟷ …

20

REVERSE ENGINEERING

FRIDA – How?

• Frida-core injecting a Google V8 JS Engine into the App scope
ꟷ Frida-core Written in C

ꟷ GumJS (the JS part) is packed as a shared library and loaded into the app

• GumJS has access to the application memory
ꟷ Can be hooked to methods and intercept calls, even native APIs

• GumJS API allow interaction with GumJS from an external client
ꟷ Because GumJS resides the application address space, it has full access to its structures

21

REVERSE ENGINEERING

FRIDA – mode Embedded

• Frida agent is embedded as a dependency of an existing application library
ꟷ Requires the application to have an .so

ꟷ libfrida-gadget.so is injected into the existing library and loaded at the same time

• Alternative: existing library is modified in order to load the additional library
ꟷ Requires patching the code in a function will be called (e.g. JNI_OnLoad)

• Alternative: patching the smali code to load the library
ꟷ Obtain APK

ꟷ Extract smali

ꟷ Change smali

ꟷ Pack it and install

• Method implies that the application is repacked/resigned

22

REVERSE ENGINEERING

FRIDA – mode Embedded

23

REVERSE ENGINEERING

FRIDA – mode Embedded – How?

$ apktool d app.apk

$ cp libfrida-gadget.so target/lib/arm

$ python3

>>> import lief

>>> native = lief.parse(“target/lib/arm/libsomething.so”)

>>> native.add_library(“libfrida-gadget.so”)

>>> native.write(“target/lib/arm/libsomething.so”)

>>> exit

$ apktool b target

… sign … install

24

REVERSE ENGINEERING

FRIDA – mode Embedded – Smali - How

• Unpack the app using apktool

• Patch the smali with

• Where? In the main activity constructor
ꟷ Even in as a static property of the class

• repack, sign, install
25

const-string v0, "frida-gadget"
invoke-static {v0}, Ljava/lang/System;->loadLibrary(Ljava/lang/String;)V

REVERSE ENGINEERING

FRIDA – mode Embedded - Caveats

• Applications may search for the library name as an anti-debug technique
ꟷ May need to change the library name

• Must use a version compatible with the target architecture
ꟷ https://github.com/frida/frida/releases

• Agent may only be loaded after the JNI library is loaded or code is reached
ꟷ After System.loadLibrary(“lib.so”)

• Agent may impose the need for permissions to access the INTERNET
ꟷ Manifest may need to be updated

26

https://github.com/frida/frida/releases

REVERSE ENGINEERING

FRIDA – mode Injected

• Run a Frida Server which injects the agent into the target process
ꟷ Server provides an API for remote use

ꟷ Server injects the agents into applications

• Requires the smartphone to be rooted or to be an emulator
ꟷ In order to run the server and inject applications

• Cannot be used in production builds, only development
ꟷ When in an Emulator, use a base without WITHOUT “Google Services”

27

REVERSE ENGINEERING

FRIDA – mode Injected – How it works?

• Create an Agent: it’s an .so with some custom code

• Start a server that will be ready to attach to processes

• Injection:
ꟷ Create thread in the remote process using ptrace

• PTRACE_ATTACH, PRACE_GETREGS

ꟷ Allocate memory for a bootstrapping code
• Minimal amount of code required for pulling the agent

ꟷ Write bootstrapper to memory

ꟷ Execute bootstrapper in remote process
• Open communication channel to server (FIFO)

• Loads the agent from a shared library (.so)

• Executes the agent

• Closes communication channel (agent will expose an API)

28

REVERSE ENGINEERING

FRIDA – mode Injected

29

code

libc

pthread

heap

libpthread.so

libc.so

program

Th
read

 1

Th
read

 2

REVERSE ENGINEERING

FRIDA – mode Injected

30

code

libc

pthread

heap

libpthread.so

libc.so

program

Th
read

 1

Th
read

 2

Th
read

 3

agent.so agent

FIFO
Frida

REVERSE ENGINEERING

FRIDA – mode Injected

• Required functionality:

• ptrace
ꟷ Process tracing

• mmap
ꟷ Map files to memory. In particular, the agent .so

• dlopen
ꟷ Open the .so with the agent

• dlsym
ꟷ Retrieves addresses of loaded symbols

• signal
ꟷ To handle system signals

31

REVERSE ENGINEERING

FRIDA – mode Injected - Howto

On the first PC terminal

wget frida-server from github

adb push frida-server /data/local/tmp
adb shell
su
cd /data/local/tmp
chmod +x frida-server
./frida-server

On the second PC terminal
List processes
$ frida-ps -U

32

REVERSE ENGINEERING

FRIDA – How to use

• Command line tools: frida, frida-trace, frida-ps, frida-discover..

• Python interface
ꟷ Provides a more advanced, programmatic interface

ꟷ Allows predictable and repeatable instrumentation

• How to instrument code: using JS that overload existing functions
ꟷ Large repository at: Frida CodeShare

33

https://codeshare.frida.re/

REVERSE ENGINEERING

Example: com.re.lab1

• Application requires a pin to unlock the flag
ꟷ Pin is created dynamically and stored to an encrypted database

ꟷ Application cannot be tampered as it checks the signature

• Static analysis will yield little as the value is created on real time

• Approaches to dynamic analysis:
ꟷ Insert a function to access the correct pin and log it to the terminal

34

REVERSE ENGINEERING

com.re.lab1

35

int d1 = b.checkAppSignature(this);
if(d1 < 1){
 Toast.makeText(context,"Application Tampered",Toast.LENGTH_LONG).show();
 this.finishAffinity();
}
try{

Let’s break the check. Just to test.
Objective: make b.checkAppSignature return false

REVERSE ENGINEERING

com.re.lab1 - Java.perform: executes the given payload

36

Java.perform(function(){
 Java.use("com.re.lab1.b").checkAppSignature.implementation = function(a) {
 console.log("Signature will fail");
 return 0;
 };
});

Snippet provides an alternative
implementation of the method.

REVERSE ENGINEERING 37

REVERSE ENGINEERING 38

cursor = secureDB.rawQuery("SELECT * FROM a;",null);
cursor.moveToFirst();

if(pp.equalsIgnoreCase(cursor.getString(0))){
 Toast.makeText(MainActivity.this, "Right Pin, Congratulations", Toast.LENGTH_SHORT).show();
 pin1.removeAllViews();
 String xo = getResources().getString(R.string.google_api_key);
 a mo = new a();
 xo = mo.func1(xo,xo.substring(4));
 xo = a.func2(xo);
 xo = a.func3(xo.substring(1),xo);
 xo = a.func4(xo,xo,xo.substring(2));
 tv1.setText("Flag: "+xo);
}else{
 Toast.makeText(MainActivity.this, "Incorrect Pin, "+(max_tries+1-i)+" attempts remaining", Toast.
}

pp has the pin provided Cursor has the value obtained form the DB

REVERSE ENGINEERING 39

Objective: reimplement Java.lang.String.equalsIgnoreCase
so that it return true, and prints the correct ping

Java.perform(function(){
 Java.use("java.lang.String").equalsIgnoreCase.implementation = function(a) {
 console.log("Real PIN: " + a);
 return true;
 };
});

REVERSE ENGINEERING 40

Other uses of the method

Finally, the PIN

REVERSE ENGINEERING

Interceptors: Intercepts calls to a function

• Define two events where code can be executed
ꟷ OnEnter: When the function is called

ꟷ OnLeave: After the function returns

• Can be used as generic logger, or to trigger other actions
ꟷ Can intercept calls on lower layers of the application stack

• Data that is to be written, sql queries, etc…

41

function foo(){
 Interceptor.attach(Module.findExportByName(“libc.so”, “open”), {
 onEnter: function(args){
 console.log(“Entering the function”);
 },
 onLeave: function(args){
 console.log(“Leaving the function”);
 },
 });
}

	Slide 1: Android – Dynamic Analysis
	Slide 2: Dynamic Analysis
	Slide 3: Dynamic Analysis
	Slide 4: Logs
	Slide 5: Network MiTM
	Slide 6: Network MiTM
	Slide 7: Traffic Flows
	Slide 8: Trusted Certificates
	Slide 9
	Slide 10: Network MITM - Limitations
	Slide 11: Certificate Pinning
	Slide 12: Certificate Pinning - Approaches
	Slide 13
	Slide 14: Certificate Pinning - Circumvention
	Slide 15: Dynamic Code Instrumentation
	Slide 16: Dynamic Binary Instrumentation - Why
	Slide 17: Custom Signatures are used
	Slide 18: Data is encrypted
	Slide 19: Many others
	Slide 20: FRIDA – How?
	Slide 21: FRIDA – How?
	Slide 22: FRIDA – mode Embedded
	Slide 23: FRIDA – mode Embedded
	Slide 24: FRIDA – mode Embedded – How?
	Slide 25: FRIDA – mode Embedded – Smali - How
	Slide 26: FRIDA – mode Embedded - Caveats
	Slide 27: FRIDA – mode Injected
	Slide 28: FRIDA – mode Injected – How it works?
	Slide 29: FRIDA – mode Injected
	Slide 30: FRIDA – mode Injected
	Slide 31: FRIDA – mode Injected
	Slide 32: FRIDA – mode Injected - Howto
	Slide 33: FRIDA – How to use
	Slide 34: Example: com.re.lab1
	Slide 35: com.re.lab1
	Slide 36: com.re.lab1 - Java.perform: executes the given payload
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Interceptors: Intercepts calls to a function

