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Native Applications

• Apps developed with OS provider’s language and frameworks.
ꟷ Java, Kotlin, Ojective-C, Swift

• Android applications are compiled and packaged with resources
ꟷ Reversing such app can be done to Java (JADX) or Smali (apktool)

• Can access all API’s made available by OS vendor. 

• But…
ꟷ SDK’s are platform-specific. 

ꟷ Each mobile OS comes with its own unique tools and GUI toolkit.

ꟷ Developing a world wide app requires multiple implementations
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Java Native Interface

• Java applications can call functions from external libraries
ꟷ Libraries can be implemented in Java, and packaged as classes
ꟷ Libraries can also be implemented in any other language

• Providing that an interfaces allows serialization and name resolution

• JNI: allows the definition of Java methods, whose implementation is 
present in native code
ꟷ When a method is invoked, the objects are serialized, and the respective native symbol is loaded

and the code executed.
ꟷ There is a penalty due to serialization, but also a performance boost due to native code execution.
ꟷ References:

• JNI Functions (oracle.com)
• Contents (oracle.com)

• Standard mechanism for Java (not specific for android)
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https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
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JNI
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Android Native Development Kit (NDK)

• Provides a Dev. Kit allowing C/C++ applications to access Android resources
ꟷ Similar to the standard SDK available to Java applications

• Developers may choose how to develop application code
ꟷ Java: faster development and richer API

ꟷ Native: faster execution, access to Linux subsystem, and more complex reverse engineering

• Sometimes binary blobs are the only method to access a cryptographic method, DRM or hardware device

• Sometimes the developer wishes to further obfuscate the code by compiling it to native code

• As libraries are native, an application must include multiple implementations
ꟷ One for each architecture

ꟷ A new device may not use applications that lack an implementation for that architecture

ꟷ Implies using portable code that works in multiple architectures (arm, armv7, arm64, x86, x64, …)
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Android binary libraries – Mediacode.apk

• Application contains DEX code and 
binary blobs

• One version for each architecture
ꟷ armeabi: ARM 32bits no Floating Point

ꟷ mips: MIPS

ꟷ x86: intel X86 32bits

• Libraries export symbols to be used 
through JNI
ꟷ nm -gD lib/x86/librrnad.so | grep JNI
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Mediacode.apk
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Android binary libraries – Mediacode.apk

• Before the binary libraries can be used, Java must load them
ꟷ System.loadLibrary: argument is the library name (without lib, architecture or .so)

ꟷ System.load: generic object load. Argument is the full path to the object

ꟷ The JNI_OnLoad method is called automatically (in the lib)

• Allows automatic setup of data structures and generic initialization

• May be abused if malware is present

• Without the library, application will crash when external methods are requested
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JNI Arguments

• Native methods support arguments from Java code
ꟷ Arguments are pointers to Java structures

ꟷ Must be processed using specific methods, capable of handling the native Java types

• Native methods can also call Java methods, and classes
ꟷ Mainly achieved by the first argument of any JNI method: JNIEnv*

• JNIEnv* is a pointer to a structure with a large number of functions.
ꟷ JNI Methods use it to invoke Java methods and handle Java types
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Android binary libraries – Mediacode.apk

• In the java world native methods are declared:
ꟷ With the keyword native

ꟷ Without implementation

• Easy to spot if we have the java or smali code
ꟷ Java: public native String decryptString(String)

ꟷ Smali: .method public native decryptString(Ljava/lang/String;)Ljava/lang/String
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JNI Dynamic Linking

• Dynamic linking is done “automagically” as long as the names of the 
methods in the library follow a fixed template
ꟷ The library is loaded into the JVM and the methods are linked automatically

ꟷ Implies that symbols are present in the library (not stripped)

• Assuming that our hello world app had a class named Worker, loading a 
method named doWork, the method in the function would be named:

java_pt_ua_deti_hello_Worker_doWork()
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magic Package name Class name method
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JNI Static Linking

• Linking must be done “manually”, by the binary code, before the 
methods are used
ꟷ Allows methods to have any name (read obfuscation!)

ꟷ A fixed method (JNI_OnLoad) is called after the lib is loaded

ꟷ Library registers the mapping between java methods and native methods using 
RegisterNatives. 
• Must do this once for each method called.
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jint RegisterNatives(JNIEnv *env, jclass clazz, const JNINativeMethod *methods, jint nMethods);

typedef struct { 
    char *name; 
    char *signature; 
    void *fnPtr; 
} JNINativeMethod;
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JNI Static Linking
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typedef struct { 
    char *name; 
    char *signature; 
    void *fnPtr; 
} JNINativeMethod;

Java method name Signature using the following specifiers:
• Z: boolean
• B: byte
• C: char
• S: short
• I: int
• J: long
• F: float
• D: double
• L fully-qualified-class ; :fully-qualified-class
• [ type: type[]
• ( arg-types ) ret-type: method type
• V: void

String foo(Int, Boolean) would result in:
(IZ)Ljava/lang/String

JNI Types and Data Structures (oracle.com)

Address of native method

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
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JNI Static Linking

• Reverse engineering of the library blob is the most viable alternative
ꟷ Some symbols must always be available: JNI_OnLoad

ꟷ Remaining symbols usually are available, although they may have obfuscated names

• Process
ꟷ Load the library in a tool: ghidra, IDA, BinaryNinja, R2, etc…

ꟷ Find the JNI_OnLoad method

ꟷ Determine when RegisterNatives is called

ꟷ Determine the arguments passed to the function

• Will allow determining the method mapping and the arguments of each function

• Actually, the arguments may also help identifying the method
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Exercises 1 and 2
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Determine which method are actually loaded
from the MediaCodec.apk shared libraries.
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strings

• Do we have interfaces matching the functions we know to be native?
ꟷ int bspatch(String str, String str2, String str3)

ꟷ void m2054a(String s) /* or void a(String s)  with jadx */

strings lib/x86/librrnad.so   |grep "(Ljava/lang/String"
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nm

• Do we have dynamic linking?

• Let's look for methods following the known pattern

• nm –gD lib/x86/librrnad.so |grep java_
ꟷ None...

• Conclusion
ꟷ We have artifacts pointing to Java types

ꟷ We do not have indication of Dynamic Linking
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ghidra

• Open ghidra

• Create a new project

• Load a library
ꟷ I loaded all and selected ARMEABI

• Several interesting functions discovered
ꟷ JNI_OnLoad
ꟷ registerNatives, registerNativeMethods
ꟷ FUN_00011230, FUN_000270, FUN_11290, FUN_112b4
ꟷ native_setAppKey

• Coherent with Static Linking

• Explore the functions, exports, Classes, etc… lots of info
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ghidra

• Graph -> Block Flow from JNI_OnLoad

• Decompile JNI_OnLoad
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JNI_OnLoad
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Call registerNatives
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JNI_OnLoad: ghidra with a JNI GDT and retyping
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• Loading the jni_all.gdt, and retyping the variables, allows 
resolution of symbols, such as the FindClass.
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registerNatives
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Call registerNativesMethods
Is this the actual register method?

Name of Java method name

Prototype void foo(String)

Native Function
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registerNativeMethods

23

Actual registration made through JNIEnv method
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Web and Hybrid applications
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Why not Native apps?

• Native Apps are not that good (or not always that good)
ꟷ Have low Code Reusability

ꟷ Require more development and maintenance

ꟷ Requires designers and developers' experts on multiple architectures

ꟷ Have low upgrade flexibility

• Once was the traditional way of developing applications
ꟷ Currently being surpassed by web and hybrid applications

• From a RE perspective, the toolset and languages are very different
ꟷ More complex to analyze

ꟷ Better commonly available obfuscators
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Web apps

• Use standard web technologies (HTML, CSS, Javascript)

• Especially since HTML5 allowed:
ꟷ Advanced UI components

ꟷ Access to media types and sources

ꟷ Access to geolocation

ꟷ Access to local storage

• Look like a standard application (present an Icon)

• Completely different stack
ꟷ Standalone Mobile Web Browser
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Hybrid apps

• Combine both worlds: Native and Web
ꟷ a thin Java application with a Web application

• Most commonly:
ꟷ Web for the interface

ꟷ Java for the application backend

ꟷ Custom Interface connecting both levels

• Installable from the store and indistinguishable from native apps
ꟷ As devices are more powerful, these are becoming very common
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Typical frameworks
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RE Perspective

• Most frameworks use JS, but sometimes with custom VMs

• Packaging consists of adding the application JS code, HTML, styles and 
remaining resources
ꟷ May use a bundle, including all resources

ꟷ May leave resources bare in the APK

ꟷ May use binary libs with obfuscated code, but frequently they are just plugins for native functions

• Code is frequently obfuscated
ꟷ An inheritance of the JS obfuscators available

• Code may be compiled to an intermediate representation
ꟷ Decompilers are not that robust as the ones for Java

• RE support is lacking…
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IONIC

• Runs on the Apache Cordova infrastructure
ꟷ Framework implemented in Java

ꟷ Application presented through a Web View

• Actual application is a webpage in the assets/www directory
ꟷ Cordova Plugins in www/plugins
• Implemented in JS, communicating with main framework through interface

• Framework is event driver with actions activated on interactions
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IONIC

• Every file contains a single line
ꟷ Minified code

ꟷ Pushing logic, or a handler 

• Index.html as the entry point

• Workflow:
ꟷ Beautify code and extract information

ꟷ Launching Cordova on local PC

ꟷ Inspection through browser

ꟷ Dynamic Analysis
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App ionfits.apk
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IONIC

32

App ionfits.apk
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Flutter

• UI from Google based on the Dart Language
ꟷ Compiled under the scope of the Dart VM (https://github.com/dart-lang/sdk)
ꟷ Designed as a dual purpose framework: Web and Mobile
ꟷ With Native and Web components

• In mobile devices, Flutter is compiled to a native object (libapp.so)

ꟷ As good reference, check: https://mrale.ph/dartvm/

• Two deployment flavors
ꟷ AOT: Ahead of Time – the most frequent – as a bytecode for the Dart VM
ꟷ JIT: Just in Time – for debug builds, interpreted from Source Code

• Project structure:
ꟷ Small java shim to load the actual code
ꟷ Framework in libfutter.so
ꟷ Application in another .so libapp.so (yes, an ELF!)

• Actually, it contains a snapshot of the VM to be loaded
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https://github.com/dart-lang/sdk
https://mrale.ph/dartvm/
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From a RE perspective

• Flutter compiles Dart to native assembly in a single bundle
ꟷ Internal formats are not publicly known in detail

• By default there is no obfuscation or encryption
ꟷ However the formats are not known

• Flutter applications are difficult to reverse engineer
ꟷ Good for intellectual property

• Some tools start to scratch the surface (mostly extract information 
from libapp.so), extracting information
ꟷ https://github.com/mildsunrise/darter

ꟷ https://github.com/rscloura/Doldrums
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https://github.com/mildsunrise/darter
https://github.com/rscloura/Doldrums
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Flutter: Flutter-Weather

• Simple application showing weather info
ꟷ https://github.com/1hanzla100/flutter-weather

• Follows typical structure
ꟷ 2 .so: Framework and App for multiple archs

• Current tools extract classes from VM
snapshot, but there is little similarity with
original code
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https://github.com/1hanzla100/flutter-weather
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