Android — Static Analysis 2

. iversidade de aveiro

REVERSE ENGINEERING

Joao Paulo Barraca

Native Applications

Jll Native Applications

* Apps developed with OS provider’s language and frameworks.

— Java, Kotlin, Ojective-C, Swift

* Android applications are compiled and packaged with resources

— Reversing such app can be done to Java (JADX) or Smali (apktool)

e Can access all API's made available by OS vendor.

* But...

— SDK’s are platform-specific.
— Each mobile OS comes with its own unique tools and GUI toolkit.
— Developing a world wide app requires multiple implementations

REVERSE ENGINEERING

| Java Native Interface

 Java applications can call functions from external libraries

— Libraries can be implemented in Java, and packaged as classes

— Libraries can also be implemented in any other language
* Providing that an interfaces allows serialization and name resolution

* JNI: allows the definition of Java methods, whose implementation is

present in native code
— When a method is invoked, the objects are serialized, and the respective native symbol is loaded

and the code executed.
— There is a penalty due to serialization, but also a performance boost due to native code execution.

— References:
 JNI Functions (oracle.com)
 Contents (oracle.com)

e Standard mechanism for Java (not specific for android)

REVERSE ENGINEERING

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

Native code Dalvik runtime

Android Android
NDK SDK

apps apps

Android app framework
B
Standard libraries

Linux kernel + Android extensions

Jll Android Native Development Kit (NDK)

* Provides a Deuv. Kit allowing C/C++ applications to access Android resources

— Similar to the standard SDK available to Java applications

* Developers may choose how to develop application code

— Java: faster development and richer API
— Native: faster execution, access to Linux subsystem, and more complex reverse engineering
* Sometimes binary blobs are the only method to access a cryptographic method, DRM or hardware device

 Sometimes the developer wishes to further obfuscate the code by compiling it to native code

 As libraries are native, an application must include multiple implementations

— One for each architecture
— A new device may not use applications that lack an implementation for that architecture
— Implies using portable code that works in multiple architectures (arm, armv7, arm64, x86, x64, ...)

REVERSE ENGINEERING '

Jll Android binary libraries — Mediacode.apk

e Application contains DEX code and
binary blobs

1ib
* One version for each architecture i@g’ra”“eag% A
— armeabi: ARM 32bits no Floating Point lihiz::sghi{u;awna 0
— mips: MIPS lib/armeabi-v7a/librrnad. so
— x86: intel X86 32bits lib/mips

lib/mips/librrnad.so
* Libraries export symbols to be used pE¥FES
through JNI 1lib/x86/11ibrrnad.so

— nm -gD 1ib/x86/1ibrrnad.so | grep INI Mediacode.apk

REVERSE ENGINEERING

]l Android binary libraries — Mediacode.apk

* Before the binary libraries can be used, Java must load them

— System.loadLibrary: argument is the library name (without lib, architecture or .so)
— System. load: generic object load. Argument is the full path to the object
— The JNI_OnLoad method is called automatically (in the lib)

* Allows automatic setup of data structures and generic initialization

May be abused if malware is present

* Without the library, application will crash when external methods are requested

@ kxrkn.xiukxrkn.xiu.cmbutd.C07131glx 3¢
[_|
a8
81 /* renamed from: tt */
82 public static wvoid m2855tt() -
83 f2132d = String.valuelf("tacd”);
54 System.loadlLibrary("rrnad”);
G I REVERSE ENGINEERING !

Jl JNI Arguments

* Native methods support arguments from Java code

— Arguments are pointers to Java structures
— Must be processed using specific methods, capable of handling the native Java types

 Native methods can also call Java methods, and classes
— Mainly achieved by the first argument of any JNI method: JINIEnv*

* JNIEnv* is a pointer to a structure with a large number of functions.

— JNI Methods use it to invoke Java methods and handle Java types

REVERSE ENGINEERING n

]l Android binary libraries — Mediacode.apk

* In the java world native methods are declared:

— With the keyword native
— Without implementation

e Easy to spot if we have the java or smali code

— Java: public native String decryptString(String)
— Smali: .method public native decryptString(Ljava/lang/String;)Ljava/lang/String

Search for text:
native
Search definitions of: Search options:
[Class []Method []Field [A Code [[] case insensitive
Node Code
4§ com.umeng.common.util.C@7@8DeltaUpdate.bspatch(String, String,...| public static native int bspatch(String str, String str2, String str3);
& com.umeng.common.util.C@7@8DeltalUpdate.m1973b(Context) String public static native int bspatch(String str, String str2, String str3);
¢ com.umeng.common.util.C@7@8DeltaUpdate.m1973b(Context) String public static native int bspatch(String str, String str2, String str3);
§ kxrkn.xiukxrkn.xiu.cmbutd.C@7131glx.m2@54a(String) void public static native void m2@54a(String str);
& kxrkn.xiukxrkn.xiu.cmbutd.C87131glx.tt2(Context) void public static native void m2@54a(String str);
¢ kxrkn.xiukxrkn.xiu.cmbutd.C@7131glx.tt2(Context) void public static native void m2@54a(String str);

REVERSE ENGINEERING

Jll JNI Dynamic Linking

* Dynamic linking is done “automagically” as long as the names of the

methods in the library follow a fixed template

— The library is loaded into the JVM and the methods are linked automatically
— Implies that symbols are present in the library (not stripped)

* Assuming that our hello world app had a class named Worker, loading a
method named doWork, the method in the function would be named:

_pt ua_deti hello Worker_ ()

Package name Class name

REVERSE ENGINEERING

] NI Static Linking

* Linking must be done “manually”, by the binary code, before the

methods are used

— Allows methods to have any name (read obfuscation!)

— A fixed method (JNI_OnLoad) is called after the lib is loaded

— Library registers the mapping between java methods and native methods using

RegisterNatives.
e Must do this once for each method called.

jint RegisterNatives(INIEnv *env, jclass clazz, const ININativeMethod *methods, jint nMethods);

typedef struct {
char *name;
char *signature;
void *fnPtr;

} ININativeMethod;
REVERSE ENGINEERING

[l NI Static Linking

Java method name

typedef struct {
char *name;
char *signature;
void *fnPtr;

} ININativeMethod;

Address of native method

Signature using the following specifiers:

o 7:

°
< ~—m OTmmuHwonw

boolean
: byte

: char

: short

: int

: long

: float

: double

fully-qualified-class ; :fully-qualified-class

type: type[]
arg-types) ret-type: method type

: void

String foo(Int, Boolean) would resultin:

(IZ)Ljava/lang/String

JNI Types and Data Structures (oracle.com)

REVERSE ENGINEERING

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html

] NI Static Linking

* Reverse engineering of the library blob is the most viable alternative

— Some symbols must always be available: INI_OnLoad
— Remaining symbols usually are available, although they may have obfuscated names

* Process
— Load the library in a tool: ghidra, IDA, BinaryNinja, R2, etc...
— Find the JNI_OnLoad method
— Determine when RegisterNatives is called

— Determine the arguments passed to the function
* Will allow determining the method mapping and the arguments of each function
e Actually, the arguments may also help identifying the method

REVERSE ENGINEERING

Exercises 1 and 2

Determine which method are actually loaded

from the MediaCodec.apk shared libraries.

REVERSE ENGINEERING

i strings

* Do we have interfaces matching the functions we know to be native?
— int bspatch(String str, String str2, String str3)
—void m2054a(String s) /* or void a(String s) with jadx */

strings 1ib/x86/1ibrrnad.so |grep "(Ljava/lang/String"

3)1

;)Ljava/lang/0Object;
sLjava/lang/string;Ljava/lang/String;Ljava/lang/ClassLoader;)V
s JLjava/lang/Class;

sZLjava/lang/ClassLoader;)Ljava/lang/Class;
sLjava/lang/String;)Landroid/content/Intent;
s;Ljava/lang/string;)Ljava/lang/string;

; JLjava/lang/String;

3 JLjavax/crypto/SecretKeyFactory;

3 JLjavax/crypto/Cipher;

REVERSE ENGINEERING

Bl nm

* Do we have dynamic linking?

* Let's look for methods following the known pattern

« nm -gDb 1lib/x86/1ibrrnad.so |grep java_

— None...

e Conclusion

— We have artifacts pointing to Java types
— We do not have indication of Dynamic Linking

REVERSE ENGINEERING

. g h id ra E';' :;Haroid_log_print...

-8 _ oxa_atexit...
- oxa_finalize...

. w-|f _ stack_chk_fail...
o Open ghld Fa i AAsset_close...
[of Adsset_getLength...
[AMsset_read...

* Create a new project D pamenoger.
o oo
* Load a library 5
— | loaded all and selected ARMEABI E EEEEE
¥ fread
* Several interesting functions discovered & om Fon 000112,
— JINI_OnLoad % iﬁi
— registerNatives, registerNativeMethods § o
— FUN_00011230, FUN 000270, FUN 11290, FUN_112b4 :._; INLOnLoad
— native_setAppKey 3 memser
¥ mkdir
e Coherent with Static Linking e reqseriaine..

* Explore the functions, exports, Classes, etc... lots of info

I

RRRRRAR
: 4
3

JNI_OnLoad

[l ghidra
* Graph -> Block Flow from JNI_OnLoad

* Decompile JNI_OnlLoad

2 |lundefinedd JHNI COnload{int *param l,undefined4 param Z,undefined4 param 3)

:
41

5 int iVarl;

& uint uVarz;

7 JHIEnv *local ci

g undefined4 uStack:;

:
10 local c = (_JHNIEnwv *)0x0;
11 uitacks = param 37
12 ivarl = (**({code **) (*param 1 + 0x18)) (param 1,&local c,0x10004);
13 if (iVarl == 0} |
14 iData(local_c);
15 iVarl = registerNatiwves(local c); -

o124

1&g uVarz = —{(uint) {ivarl = 0) | 0x10004;
17 }

15 uVar? = Oxffffffff;
20].
21 return CONCAT44 (param 1,uVari);

Il JNI_OnLoad

undefinedd JNI_ OnLoad{int *param l,undefined4 param 2,undefined4 param 3)

int iVarl;

uint uVara;
_JNIEnv *local c;
undefinedd uStacks;

LY T TS Y L o Y CO L T %

10 local c = ({_JNIEnwv *)0x0;

11 ustacks = param 3;

12 iVarl = (**({code **) (*param 1 + 0Ox18)) (param 1,&local c,0x10004);
13 if (iVarl == 0) |

14 iData{local c);
15 iVarl = registerNatives(local c); < Call registerNatives
1lé uWVarZ = —{uint) (iVarl = 0} | 0xl0004;

ara Oxfffffffsf;

'—l
= oo
——t
=
<
0
&
I
Il

return CONCAT44 (param 1,uVari);

% T i T % N %
[sd
——t

Cad

REVERSE ENGINEERING

Jll JNI_OnLoad: ghidra with a JNI GDT and retyping

* Loading the jni_all. gdt, and retyping the variables, allows
resolution of symbols, such as the FindClass.

2 (undefinedd JHNI OnLoad (JNIEnv *param l,undefined4 param 2,undefined4 param 3)
EHE

3 jclass r

i int iVar2

7 uint uVari;

JHIEnw *local cf

9 undefined4 uStacks;
11 local o = (JNIEnw *)0=0;
12 uitackd = param 3;
13 p Varl = (*{*param 1)->»FindClass)} (param 1, {char *)&local _c):
14 if {p Varl == (jclasa)0x0) {
15 iData({({ JNIEnv *)local c);
16 iVarZ = registerMNatiwves(({_JNIEnv *})local _cj;
17 uVarid = —{uint) {(iVarZ = 0) | 0x10004;
1 }
1 glae |
2 uVar3 = Oxffffffff;
}

return CONCAT44 (param 1,uVari);

J Ba [ba [
[o

.

I

REVERSE ENGINEERING

il registerNatives

[a

=] o

[N s |

/* registerNatives({ JNIEnwv*) */

vold registerNatives (JNIEnv *param 1)

undefined *local 14;

char *local 10;

code *local c; Name of Java method name
local 14 = &DAT 0001503b; Prototype void foo(String)
local 10 =™] ¥ fStrir M 1:-"-": H H

tocal L0 = "{Ljava/lang/String;) Native Function

local c = native sethAppkey + 1;
registerNativeMethods (param 1,nativeClassFordni, (JHINativeMethod *)&local 14,1);
return;

Call registerNativesMethods
Is this the actual register method?

REVERSE ENGINEERING

il registerNativeMethods

4 |jclass registerNativeMethods (JNIEnv *param 1,char *param 2, JHINativeMethod *param 3,int param 4)
3

;

7 jelass clazz;

g uint uVarl;

G jthrowable p Vari;

10

11 clazz = (¥ ({*param l)->»>FindClass) (param 1,param 2);

12 if {clazz !'= (Jclass)0xl) {

13 uVarl = (*(*param l)->RegisterNatives) (param 1,clazz, (JNINativeMethod *)param 3,param 4);
14 p_WVarZ = (¥ {*param_l)->Exceptionlccurred) (param_1):

15 if (p Var2 = (jthrowable)Oxd) |

il clazz = (jclaas) (~uVarl >» 0xlf);

17 }

8 elae |

15 (*{*param 1) ->ExceptionClear) (param_1);

20 clazz = (jclass)0xl;

21 } . .

o2 | 3 Actual registration made through JNIEnv method
23 return clazz;

24 (1

23

REVERSE ENGINEERING

Web and Hybrid applications

ll Why not Native apps?

* Native Apps are not that good (or not always that good)

— Have low Code Reusability

— Require more development and maintenance

— Requires designers and developers' experts on multiple architectures
— Have low upgrade flexibility

* Once was the traditional way of developing applications
— Currently being surpassed by web and hybrid applications

* From a RE perspective, the toolset and languages are very different

— More complex to analyze
— Better commonly available obfuscators

REVERSE ENGINEERING

[l Web apps
e Use standard web technologies (HTML, CSS, Javascript)

* Especially since HTMLS5 allowed:

— Advanced Ul components

— Access to media types and sources
— Access to geolocation

— Access to local storage

 Look like a standard application (present an Icon)

 Completely different stack

— Standalone Mobile Web Browser

REVERSE ENGINEERING

Jl Hybrid apps

e Combine both worlds: Native and Web

— a thin Java application with a Web application

* Most commonly:

— Web for the interface
— Java for the application backend
— Custom Interface connecting both levels

* Installable from the store and indistinguishable from native apps

— As devices are more powerful, these are becoming very common

REVERSE ENGINEERING

Typical frameworks

IMPLEMENT YOUR THOUGHTS

React Native

React Native is among the best mobile app frameworks
that work great on Android and iOS both.

Flutter
o / o Flutter is a bit of a complex framework compared to the
Platforms for y other two. It uses Dart coding language for the app

development and hence,

Development J®@ ", jQuery Mobile

! jQuery is one of the most popular and easy to work upon
. mobile app frameworks.

www.tcatechnologies.com

I RE Perspective

 Most frameworks use JS, but sometimes with custom VMs

* Packaging consists of adding the application JS code, HTML, styles and

remaining resources
— May use a bundle, including all resources

— May leave resources bare in the APK
— May use binary libs with obfuscated code, but frequently they are just plugins for native functions

e Code is frequently obfuscated
— An inheritance of the JS obfuscators available

* Code may be compiled to an intermediate representation
— Decompilers are not that robust as the ones for Java

* RE supportis lacking...

REVERSE ENGINEERING

Il IONIC

* Runs on the Apache Cordova infrastructure

— Framework implemented in Java
— Application presented through a Web View

» Actual application is a webpage in the assets/www directory

— Cordova Plugins in www/plugins

* Implemented in JS, communicating with main framework through interface

* Framework is event driver with actions activated on interactions

REVERSE ENGINEERING

102-e52015.51371bd9617aa%78dfbf .=

. I O N I C 103-e55.fb98cdb] 696babdd028d, s

103-e52015.fb98cdb1696babdd028d. 5

104-e53.9e7b364d4dcIcc3c3 7878, s

o Eve r‘y fl I e CO nta INS Ad SI ngl e I inNe 104-e52015.9e7b364d4c5cc3c37878 5
105-es3.b56638b78b99f52128b9)5

— Min |f|ed COde 105-es2015.b56638b78b99f52128b9.js

106-e55.77dd521666c08820e751 5
106-e52015.77dd521666c08820e751.js

. common-es3.1ccd0e8932f363dd10cf)5
. common-es2013.1ccd0ed932f563dd 10t s
cordova.22d0b106f4dfdB0ebb7 s

* Index.html as the entry point B cordovajs

cordova_plugins.|s

— Pushing logic, or a handler

W

W

W

index.html

o WOI‘kﬂOW: B main-es5.6e96f9da3b0f73cbbled.js

. rain-esd015.6e26f0da3blf 73cbbled s
polyfills-es3.121ee1733feb37c198bes
. polyfills-es2015.4c8fdf27194d9cbebead. s
runtime-es3.8b23a06649%90db185a8.)s

— Inspection through browser runtime-es2015.8b23a06649f00db 18528 js
v styles.d25dcl4febfcbbab33d/.css

W

W

— Beautify code and extract information

0

W

— Launching Cordova on local PC

— Dynamic Analysis
App ionfits.apk

REVERSE ENGINEERING

{window.webpack]sonp = window.webpackJsonp [1)-push{[
[31. {
adYZ: function{t, e, n) {
"use strict”;
n.r{e), n.d(e, "createSwipeBackGesture", (function() {
a

s
var r = n{"AzG1"),

a = function(t, e, n, a, i) {
var o = t.ownerDocument.defaultView;
Object{r.createGesture){{

el: t,
gestureName: "goback-swipe”,
gesturePriority: 48,

threshold: 148,
canStart: function(t) {
t.startX 58 e()
Is
onStart: n,
onMove: function(t) {
a(t.deltaX / o.innerlWidth)
Is
onEnd: function{t) {
var e = o.innerWidth,
n = t.deltaX / e,

r = t.velocityX,

a-r 8 {r .2 t.deltaX > e / 2),
c=(a?1-n:n) *e,

u a;

(c > 5) {

var s = ¢ / Math.abs(r);

Math.min(s, 548)

App ionfits.apk

REVERSE ENGINEERING 32

]l Flutter

* Ul from Google based on the Dart Language

— Compiled under the scope of the Dart VM (https://github.com/dart-lang/sdk)
— Designed as a dual purpose framework: Web and Mobile

— With Native and Web components
* In mobile devices, Flutter is compiled to a native object (libapp.so)
— As good reference, check: https://mrale.ph/dartvm/

* Two deployment flavors

— AOT: Ahead of Time — the most frequent — as a bytecode for the Dart VM
— JIT: Just in Time — for debug builds, interpreted from Source Code

* Project structure:

— Small java shim to load the actual code
— Framework in libfutter.so

— Application in another .so libapp.so (yes, an ELF!)
e Actually, it contains a snapshot of the VM to be loaded

REVERSE ENGINEERING

https://github.com/dart-lang/sdk
https://mrale.ph/dartvm/

Jll From a RE perspective

* Flutter compiles Dart to native assembly in a single bundle
— Internal formats are not publicly known in detail

* By default there is no obfuscation or encryption
— However the formats are not known

* Flutter applications are difficult to reverse engineer
— Good for intellectual property

* Some tools start to scratch the surface (mostly extract information

from libapp.so), extracting information

— https://github.com/mildsunrise/darter
— https://github.com/rscloura/Doldrums

REVERSE ENGINEERING

https://github.com/mildsunrise/darter
https://github.com/rscloura/Doldrums

Jl Flutter: Flutter-Weather 1ib

1ib/arme4-v8a

e Simple application showing weather info e e

— https://github.com/1hanzlal00/flutter-weather lib/armea-vg8a/1ibflutter.so
. lib/armeabi-v7a
* Follows typical structure 1ib/armeabi-v7a/libapp. so

— 2 .so0: Framework and App for multiple archs lib/armeabi-v7a/libflutter.so
1ib/x86 64

* Current tools extract classes from VM 1ib/x86_64/1ibapp. so
snapshot, but there is little similarity with e [laf IEIEP-E2

original code

1ib/x86 64/1ibapp.so: ELF 64-bit LSB ple executable, x86-64, version 1 (SYSV),

dynamically linked, BulldID[md5/uuld]=469a650592e15d744a33d6albdbaabs2, strip
ped

REVERSE ENGINEERING

https://github.com/1hanzla100/flutter-weather

	Slide 1: Android – Static Analysis 2
	Slide 2: Native Applications
	Slide 3: Native Applications
	Slide 4: Java Native Interface
	Slide 5: JNI
	Slide 6: Android Native Development Kit (NDK)
	Slide 7: Android binary libraries – Mediacode.apk
	Slide 8: Android binary libraries – Mediacode.apk
	Slide 9: JNI Arguments
	Slide 10: Android binary libraries – Mediacode.apk
	Slide 11: JNI Dynamic Linking
	Slide 12: JNI Static Linking
	Slide 13: JNI Static Linking
	Slide 14: JNI Static Linking
	Slide 15: Exercises 1 and 2
	Slide 16: strings
	Slide 17: nm
	Slide 18: ghidra
	Slide 19: ghidra
	Slide 20: JNI_OnLoad
	Slide 21: JNI_OnLoad: ghidra with a JNI GDT and retyping
	Slide 22: registerNatives
	Slide 23: registerNativeMethods
	Slide 24: Web and Hybrid applications
	Slide 25: Why not Native apps?
	Slide 26: Web apps
	Slide 27: Hybrid apps
	Slide 28: Typical frameworks
	Slide 29: RE Perspective
	Slide 30: IONIC
	Slide 31: IONIC
	Slide 32: IONIC
	Slide 33: Flutter
	Slide 34: From a RE perspective
	Slide 35: Flutter: Flutter-Weather

