
Android –Static Analysis 2
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Native Applications

2

REVERSE ENGINEERING

Native Applications

• Apps developed with OS provider’s language and frameworks.
ꟷ Java, Kotlin, Ojective-C, Swift

• Android applications are compiled and packaged with resources
ꟷ Reversing such app can be done to Java (JADX) or Smali (apktool)

• Can access all API’s made available by OS vendor.

• But…
ꟷ SDK’s are platform-specific.

ꟷ Each mobile OS comes with its own unique tools and GUI toolkit.

ꟷ Developing a world wide app requires multiple implementations

3

REVERSE ENGINEERING

Java Native Interface

• Java applications can call functions from external libraries
ꟷ Libraries can be implemented in Java, and packaged as classes
ꟷ Libraries can also be implemented in any other language

• Providing that an interfaces allows serialization and name resolution

• JNI: allows the definition of Java methods, whose implementation is
present in native code
ꟷ When a method is invoked, the objects are serialized, and the respective native symbol is loaded

and the code executed.
ꟷ There is a penalty due to serialization, but also a performance boost due to native code execution.
ꟷ References:

• JNI Functions (oracle.com)
• Contents (oracle.com)

• Standard mechanism for Java (not specific for android)

4

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

REVERSE ENGINEERING

JNI

5

REVERSE ENGINEERING

Android Native Development Kit (NDK)

• Provides a Dev. Kit allowing C/C++ applications to access Android resources
ꟷ Similar to the standard SDK available to Java applications

• Developers may choose how to develop application code
ꟷ Java: faster development and richer API

ꟷ Native: faster execution, access to Linux subsystem, and more complex reverse engineering

• Sometimes binary blobs are the only method to access a cryptographic method, DRM or hardware device

• Sometimes the developer wishes to further obfuscate the code by compiling it to native code

• As libraries are native, an application must include multiple implementations
ꟷ One for each architecture

ꟷ A new device may not use applications that lack an implementation for that architecture

ꟷ Implies using portable code that works in multiple architectures (arm, armv7, arm64, x86, x64, …)

6

REVERSE ENGINEERING

Android binary libraries – Mediacode.apk

• Application contains DEX code and
binary blobs

• One version for each architecture
ꟷ armeabi: ARM 32bits no Floating Point

ꟷ mips: MIPS

ꟷ x86: intel X86 32bits

• Libraries export symbols to be used
through JNI
ꟷ nm -gD lib/x86/librrnad.so | grep JNI

7

Mediacode.apk

REVERSE ENGINEERING

Android binary libraries – Mediacode.apk

• Before the binary libraries can be used, Java must load them
ꟷ System.loadLibrary: argument is the library name (without lib, architecture or .so)

ꟷ System.load: generic object load. Argument is the full path to the object

ꟷ The JNI_OnLoad method is called automatically (in the lib)

• Allows automatic setup of data structures and generic initialization

• May be abused if malware is present

• Without the library, application will crash when external methods are requested

8

REVERSE ENGINEERING

JNI Arguments

• Native methods support arguments from Java code
ꟷ Arguments are pointers to Java structures

ꟷ Must be processed using specific methods, capable of handling the native Java types

• Native methods can also call Java methods, and classes
ꟷ Mainly achieved by the first argument of any JNI method: JNIEnv*

• JNIEnv* is a pointer to a structure with a large number of functions.
ꟷ JNI Methods use it to invoke Java methods and handle Java types

9

REVERSE ENGINEERING

Android binary libraries – Mediacode.apk

• In the java world native methods are declared:
ꟷ With the keyword native

ꟷ Without implementation

• Easy to spot if we have the java or smali code
ꟷ Java: public native String decryptString(String)

ꟷ Smali: .method public native decryptString(Ljava/lang/String;)Ljava/lang/String

10

REVERSE ENGINEERING

JNI Dynamic Linking

• Dynamic linking is done “automagically” as long as the names of the
methods in the library follow a fixed template
ꟷ The library is loaded into the JVM and the methods are linked automatically

ꟷ Implies that symbols are present in the library (not stripped)

• Assuming that our hello world app had a class named Worker, loading a
method named doWork, the method in the function would be named:

java_pt_ua_deti_hello_Worker_doWork()

11

magic Package name Class name method

REVERSE ENGINEERING

JNI Static Linking

• Linking must be done “manually”, by the binary code, before the
methods are used
ꟷ Allows methods to have any name (read obfuscation!)

ꟷ A fixed method (JNI_OnLoad) is called after the lib is loaded

ꟷ Library registers the mapping between java methods and native methods using
RegisterNatives.
• Must do this once for each method called.

12

jint RegisterNatives(JNIEnv *env, jclass clazz, const JNINativeMethod *methods, jint nMethods);

typedef struct {
 char *name;
 char *signature;
 void *fnPtr;
} JNINativeMethod;

REVERSE ENGINEERING

JNI Static Linking

13

typedef struct {
 char *name;
 char *signature;
 void *fnPtr;
} JNINativeMethod;

Java method name Signature using the following specifiers:
• Z: boolean
• B: byte
• C: char
• S: short
• I: int
• J: long
• F: float
• D: double
• L fully-qualified-class ; :fully-qualified-class
• [type: type[]
• (arg-types) ret-type: method type
• V: void

String foo(Int, Boolean) would result in:
(IZ)Ljava/lang/String

JNI Types and Data Structures (oracle.com)

Address of native method

https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html

REVERSE ENGINEERING

JNI Static Linking

• Reverse engineering of the library blob is the most viable alternative
ꟷ Some symbols must always be available: JNI_OnLoad

ꟷ Remaining symbols usually are available, although they may have obfuscated names

• Process
ꟷ Load the library in a tool: ghidra, IDA, BinaryNinja, R2, etc…

ꟷ Find the JNI_OnLoad method

ꟷ Determine when RegisterNatives is called

ꟷ Determine the arguments passed to the function

• Will allow determining the method mapping and the arguments of each function

• Actually, the arguments may also help identifying the method

14

REVERSE ENGINEERING

Exercises 1 and 2

15

Determine which method are actually loaded
from the MediaCodec.apk shared libraries.

REVERSE ENGINEERING

strings

• Do we have interfaces matching the functions we know to be native?
ꟷ int bspatch(String str, String str2, String str3)

ꟷ void m2054a(String s) /* or void a(String s) with jadx */

strings lib/x86/librrnad.so |grep "(Ljava/lang/String"

16

REVERSE ENGINEERING

nm

• Do we have dynamic linking?

• Let's look for methods following the known pattern

• nm –gD lib/x86/librrnad.so |grep java_
ꟷ None...

• Conclusion
ꟷ We have artifacts pointing to Java types

ꟷ We do not have indication of Dynamic Linking

17

REVERSE ENGINEERING

ghidra

• Open ghidra

• Create a new project

• Load a library
ꟷ I loaded all and selected ARMEABI

• Several interesting functions discovered
ꟷ JNI_OnLoad
ꟷ registerNatives, registerNativeMethods
ꟷ FUN_00011230, FUN_000270, FUN_11290, FUN_112b4
ꟷ native_setAppKey

• Coherent with Static Linking

• Explore the functions, exports, Classes, etc… lots of info

18

REVERSE ENGINEERING

ghidra

• Graph -> Block Flow from JNI_OnLoad

• Decompile JNI_OnLoad

19

REVERSE ENGINEERING

JNI_OnLoad

20

Call registerNatives

REVERSE ENGINEERING

JNI_OnLoad: ghidra with a JNI GDT and retyping

21

• Loading the jni_all.gdt, and retyping the variables, allows
resolution of symbols, such as the FindClass.

REVERSE ENGINEERING

registerNatives

22

Call registerNativesMethods
Is this the actual register method?

Name of Java method name

Prototype void foo(String)

Native Function

REVERSE ENGINEERING

registerNativeMethods

23

Actual registration made through JNIEnv method

REVERSE ENGINEERING

Web and Hybrid applications

24

REVERSE ENGINEERING

Why not Native apps?

• Native Apps are not that good (or not always that good)
ꟷ Have low Code Reusability

ꟷ Require more development and maintenance

ꟷ Requires designers and developers' experts on multiple architectures

ꟷ Have low upgrade flexibility

• Once was the traditional way of developing applications
ꟷ Currently being surpassed by web and hybrid applications

• From a RE perspective, the toolset and languages are very different
ꟷ More complex to analyze

ꟷ Better commonly available obfuscators

25

REVERSE ENGINEERING

Web apps

• Use standard web technologies (HTML, CSS, Javascript)

• Especially since HTML5 allowed:
ꟷ Advanced UI components

ꟷ Access to media types and sources

ꟷ Access to geolocation

ꟷ Access to local storage

• Look like a standard application (present an Icon)

• Completely different stack
ꟷ Standalone Mobile Web Browser

26

REVERSE ENGINEERING

Hybrid apps

• Combine both worlds: Native and Web
ꟷ a thin Java application with a Web application

• Most commonly:
ꟷ Web for the interface

ꟷ Java for the application backend

ꟷ Custom Interface connecting both levels

• Installable from the store and indistinguishable from native apps
ꟷ As devices are more powerful, these are becoming very common

27

REVERSE ENGINEERING

Typical frameworks

28

REVERSE ENGINEERING

RE Perspective

• Most frameworks use JS, but sometimes with custom VMs

• Packaging consists of adding the application JS code, HTML, styles and
remaining resources
ꟷ May use a bundle, including all resources

ꟷ May leave resources bare in the APK

ꟷ May use binary libs with obfuscated code, but frequently they are just plugins for native functions

• Code is frequently obfuscated
ꟷ An inheritance of the JS obfuscators available

• Code may be compiled to an intermediate representation
ꟷ Decompilers are not that robust as the ones for Java

• RE support is lacking…

29

REVERSE ENGINEERING

IONIC

• Runs on the Apache Cordova infrastructure
ꟷ Framework implemented in Java

ꟷ Application presented through a Web View

• Actual application is a webpage in the assets/www directory
ꟷ Cordova Plugins in www/plugins
• Implemented in JS, communicating with main framework through interface

• Framework is event driver with actions activated on interactions

30

REVERSE ENGINEERING

IONIC

• Every file contains a single line
ꟷ Minified code

ꟷ Pushing logic, or a handler

• Index.html as the entry point

• Workflow:
ꟷ Beautify code and extract information

ꟷ Launching Cordova on local PC

ꟷ Inspection through browser

ꟷ Dynamic Analysis

31

App ionfits.apk

REVERSE ENGINEERING

IONIC

32

App ionfits.apk

REVERSE ENGINEERING

Flutter

• UI from Google based on the Dart Language
ꟷ Compiled under the scope of the Dart VM (https://github.com/dart-lang/sdk)
ꟷ Designed as a dual purpose framework: Web and Mobile
ꟷ With Native and Web components

• In mobile devices, Flutter is compiled to a native object (libapp.so)

ꟷ As good reference, check: https://mrale.ph/dartvm/

• Two deployment flavors
ꟷ AOT: Ahead of Time – the most frequent – as a bytecode for the Dart VM
ꟷ JIT: Just in Time – for debug builds, interpreted from Source Code

• Project structure:
ꟷ Small java shim to load the actual code
ꟷ Framework in libfutter.so
ꟷ Application in another .so libapp.so (yes, an ELF!)

• Actually, it contains a snapshot of the VM to be loaded

33

https://github.com/dart-lang/sdk
https://mrale.ph/dartvm/

REVERSE ENGINEERING

From a RE perspective

• Flutter compiles Dart to native assembly in a single bundle
ꟷ Internal formats are not publicly known in detail

• By default there is no obfuscation or encryption
ꟷ However the formats are not known

• Flutter applications are difficult to reverse engineer
ꟷ Good for intellectual property

• Some tools start to scratch the surface (mostly extract information
from libapp.so), extracting information
ꟷ https://github.com/mildsunrise/darter

ꟷ https://github.com/rscloura/Doldrums

34

https://github.com/mildsunrise/darter
https://github.com/rscloura/Doldrums

REVERSE ENGINEERING

Flutter: Flutter-Weather

• Simple application showing weather info
ꟷ https://github.com/1hanzla100/flutter-weather

• Follows typical structure
ꟷ 2 .so: Framework and App for multiple archs

• Current tools extract classes from VM
snapshot, but there is little similarity with
original code

35

https://github.com/1hanzla100/flutter-weather

	Slide 1: Android – Static Analysis 2
	Slide 2: Native Applications
	Slide 3: Native Applications
	Slide 4: Java Native Interface
	Slide 5: JNI
	Slide 6: Android Native Development Kit (NDK)
	Slide 7: Android binary libraries – Mediacode.apk
	Slide 8: Android binary libraries – Mediacode.apk
	Slide 9: JNI Arguments
	Slide 10: Android binary libraries – Mediacode.apk
	Slide 11: JNI Dynamic Linking
	Slide 12: JNI Static Linking
	Slide 13: JNI Static Linking
	Slide 14: JNI Static Linking
	Slide 15: Exercises 1 and 2
	Slide 16: strings
	Slide 17: nm
	Slide 18: ghidra
	Slide 19: ghidra
	Slide 20: JNI_OnLoad
	Slide 21: JNI_OnLoad: ghidra with a JNI GDT and retyping
	Slide 22: registerNatives
	Slide 23: registerNativeMethods
	Slide 24: Web and Hybrid applications
	Slide 25: Why not Native apps?
	Slide 26: Web apps
	Slide 27: Hybrid apps
	Slide 28: Typical frameworks
	Slide 29: RE Perspective
	Slide 30: IONIC
	Slide 31: IONIC
	Slide 32: IONIC
	Slide 33: Flutter
	Slide 34: From a RE perspective
	Slide 35: Flutter: Flutter-Weather

