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Mobile landscape

Includes a wide a range of devices with low power characteristics
◦ Although we may be talking about an 8 core, +2GHz CPU

◦ So… lots of potential computational power, which cannot be fully exploited due to battery limitations/power envelope

Smartphones: becoming the primary gateway through which users interact
◦ Dominated by two tech stacks: Android and iOS

◦ Supported application stores providing an easy access for app/content distribution
◦ Application store acts and single point of control and can audit applications or enforce rules

◦ Devices are becoming increasingly secure and already enable 2FA, smart payments, …
◦ Backed by hardware enclaves/trusted execution environments, secure encrypted storage, locked bootloaders, 
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Mobile landscape

Same tech stack is reused for other platforms… (mostly android)
◦ Smart TVs

◦ Car infotainment

◦ Home appliances

◦ Smart houses

Current data points towards more than 8.6 billion devices
◦ This is already above the number of people on earth
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Anatomy of a mobile device (Hardware)

Modem: handles communications
◦ Closed source, provides ports to main CPU

SoC: main system including applicational CPU
◦ Runs kernel plus user applications
◦ May include a Trusted Execution Environment

◦ TEE may be external

Internal Storage: NAND flash on device
◦ Soldered
◦ Typically encrypted in more recent models

External Storage: SD Card (optional)
◦ Upgradable by users
◦ Typically, not encrypted

User I/O touch screen + buttons + biometric

Modem

System on a Chip

User I/O

RAM

Internal 
Storage

Support 
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External 
Storage

TEE
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Anatomy of a mobile device (Software)

BootROM
◦ Read only code to boot device

Bootloader
◦ Prepares the loading of a kernel
◦ May be locked: validates kernel auth

Kernel
◦ iOS/Linux/Windows kernel

HAL
◦ Provide access to hardware resources

Framework
◦ Set of classes through which applications interact

Application
◦ Software packages provides by multiple parties and users
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Android Applications

Components deriving from primitive framework classes
◦ Activity: a single, focused thing that the user can do

◦ will usually take the whole screen

◦ Service: a component doing something or providing functionality 
◦ without UI presence

◦ Broadcast Receiver: a receiver of intents to handle events and IPC
◦ Content Provider: encapsulate data and provide it to applications

Assumes an asynchronous, non persistent model
◦ Applications can be stopped/paused/started/resumed at any time
◦ Intents are used as an important IPC to dispatch messages across 

components

All this is represented as Java/Kotlin classes
◦ Inherited by applications

Activity Service

Broadcast 
Receiver

Content 
Provider

Java Runtime

Storage
Preferences
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Trusted Execution Environment (TEE)

An isolated environment that runs in 
parallel with the operating system
◦ providing security for the rich environment

◦ also called an Enclave

More secure than the User-facing OS
◦ ARM TrustZone TEE: Allows creation of two 

execution contexts on same resources

TEE will store cryptographic material 
and hold sensitive applications
◦ A base concept for mobile payments and 

secure storage
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TEE: Keymaster

Provides access to the keystore
◦ API based, not full RW access
◦ Replies to requests from authorized services (shared secret), having a valid 

(recent) AuthToken

Keymaster 1: Android 6
◦ Signing API (sign, verify, import keys)

Keymaster 2: Android 7
◦ Support for AES and HMAC
◦ Key Attestation: Certifies keys (origin, property, usages)
◦ Version Binding: ties keys to OS and TEE version, preventing downgrades

Keymaster 3: Android 8
◦ ID Attestation: Key device identifiers are stored as HMAC(HWKEY, IDn)

Keymaster 4: Android 9
◦ Embedded Secure Elements: allowing embedded “smartcards”
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Underlying Platform 

Boot is secure with integrity checks by the bootloader
◦ While this is true, only vendor kernels can be used

◦ Users may unlock the bootloader allowing to customize the boot process
◦ If allowed by the vendor

◦ Unlocking will erase all user data

Applications never execute with uid 0 and there is no method of doing it
◦ Occasionally, attacks to the platform may allow such access

◦ All interactions are made through the SDK, which run on a Java Virtual Machine

Internal Storage is encrypted
◦ direct access is not allowed without flashing everything
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Underlying Platform 
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Android Application Permissions

Given the strongly service-based orientation, Access Control is very granular

Applications must declare on compile time which permissions they require

Users may accept the App permissions
◦ Install Time or at Run Time

◦ Not granting a permission will effectively block those resources from the App

Typical permissions: Camera, Storage, Contacts, Location, Accessibility, 
Sensors, SMS, …

<manifest ... >
<uses-permission

android:name="android.permission.SEND_SMS"/>
...

</manifest>
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Android Intents

Intents are a Message Passing mechanism for IPC
◦ As execution is not persistent and applications are strongly isolated, this provides an 

effective manner for auditable and controllable IPC

Composed by two main sections
◦ Action: specifies the action to be triggered. There are several already defined
◦ Data: specifies the arguments to be passed

Intents can be sent with different scopes
◦ To all components, to a specific component.

◦ Framework will resolve the actual receiver

◦ Multiple components can receive the same intent
◦ We can even have broadcast intents
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Mobile security issues

Threat landscape is wide, and attacks are valuable
◦ A non interaction RCE may award 1-2M€
◦ A single vulnerability found is immediately applicable to millions of devices

Relevant sources of vulnerabilities
◦ Underlying software or hardware platform
◦ Wrongly coded applications/programming mistakes
◦ Abusive applications (malware)
◦ Users are careless

Attacks can focus on user data, or as a pivot for further actions. Even against support 
infra.
◦ Conduct 2FA towards an infrastructure
◦ Track users and their personal data
◦ Access bank/financial related data
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Platform issues

Vendors follow the design guidelines towards secure systems
◦ Google enforces minimum security requirements for approved devices

Vendors sometimes also introduce additional issues with their implementations
◦ Insecure Trustlets in the TEE

◦ Cerdeira et al, “SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems” review existing 
flaws exploiting issues in the TEE

◦ APDUs for  remote management
◦ André Pereira et al, “USB connection vulnerabilities on Android smartphones: default and vendors’ customizations” found 

custom APDUs in Samsung devices disclosing device identification and allowing automated flashing of a malicious app

◦ Modem implementation
◦ QualPwn - Exploiting Qualcomm WLAN and Modem Over The Air

◦ Vulnerable or abusive pre-installed applications
◦ Xiaomi ‘Guard Provider’ downloads antivirus APK through HTTP, allowing remote injection of malicious code
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Careless users

Users lack the knowledge to properly assess the impact of providing a permission
◦ Application may leak data directly, or may use that method to gain additional information
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Wrongly coded applications/programming mistakes

Mobile apps are frequently populated with bugs/mistakes as other applications
◦ Because the code is available to clients, inspection and abuse becomes more frequent
◦ Java/Kotlin can be decompiled to source code

◦ Obfuscation helps but only has limited impact

Mobile app development is popular, with tools providing facilitated access
◦ Enabling wide use by many developers also increases the amount of security issues
◦ Being able to implement a mobile app != knowing how to security use the platform
◦ Mobile apps are used for shop frontends and small trials.

◦ There is a respectable amount of sub-quality apps around.

The platform provides some protection mechanisms and scanning for malware
◦ Yet it doesn’t correct bad/naive code
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Insecure Bank

A mobile goat application exposing many flaws, for research and training purposes
◦ Will be used in this class for demonstrating the multiple things that can go wrong

Setup
◦ Install Android Studio and create a Virtual Device

◦ Create a Mobile Device emulating a Nexus 5X – API 26

◦ Install android tools: https://www.xda-developers.com/install-adb-windows-macos-linux/

◦ Download and install the APK with: adb install InsecureBankv2.apk

◦ You should have a full-blown android device with the application installed

◦ Download the server code and run it in your PC

◦ To enable connection between app and server run: adb reverse tcp:8888 tcp:8888
◦ This will make the server in the host available in the android using port 8888

https://www.xda-developers.com/install-adb-windows-macos-linux/
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Decompiling Mobile Applications

Concepts:
◦ Disassemble: convert bytecode to Assembly language

◦ Decompile: convert bytecode to a higher-level representation of the algorithm (Usually a C representation)

All applications can be analyzed after compilation
◦ A topic of reverse engineering

◦ Android applications are particularly susceptible to it as Java bytecode can de decompiled back to Java

Problem: putting too much trust in the “obscurity” provided by bytecode
◦ An issue for binary applications and even more for android

◦ Attacker can download, modify, repack and upload an application

◦ Use of ProGuard or other obfuscation method is still low: https://arxiv.org/pdf/1801.02742.pdf

Impact: manipulation, access to sensitive data, repackage, brand damage

https://arxiv.org/pdf/1801.02742.pdf
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Decompiling Mobile Applications

1. Download InsecureBank.apk

2. Download jadx: https://github.com/skylot/jadx

3. Open apk with jadx

4. Resources and source code should be mostly available

Remediation: Obfuscators should be used!
◦ Remove class names and can rearrange code
◦ Eliminates dead/unused code
◦ Can implement anti-decompile mechanisms
◦ Only increase the effort to decompile an application and do not prevent it

https://github.com/skylot/jadx
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InsecureBank

Code fully decompiled.
No obfuscation
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com.facebook.katana

Code mostly decompiled
Obfuscation in place
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Administrator Interfaces

Mobile applications frequently clients to remote systems
◦ Similar to what a browser would do

◦ Actually, many applications are not more than a web page

However naïve developers may identify an increased security in the use of an APK
◦ In a web application it is assumed that all code is available to users as HTML/JS
◦ In a mobile app, everything is enclosed in a APK file

Believing in this and having a wrong sense of security is a serious mistake

Typical issue: inclusion of debug/special access APIs in applications
◦ Useful for testing purposes
◦ Left in the application as the developer doesn’t expect an attacker to access source code

◦ Obfuscation mechanisms presented in most tools actually increase this issue (as they do not work that well)
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Administrator Interfaces

Issue still affects many applications
◦ Interestingly, mostly pre-installed apps!

◦ Which users cannot uninstall and have large install

Access to such interfaces may provide 
access beyond expectations
◦ May circumvent further access control

Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt, Giancarlo Pellegrino , Zhiqiang Lin 
“Automatic Uncovering of Hidden Behaviors From Input Validation in Mobile Apps”
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Administrator Interfaces

Exercise: can you find a hardcoded login in the bank app?
◦ What was the purpose of adding said interfaces?

◦ What impact can be expected?

◦ Are they required?
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Administrator Interfaces

Alternative login uses a different login process if username=“devadmin”
◦ /devlogin instead of /login

Impact: User devadmin provides access no matter what the password is
◦ Probably a left over from the development process
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Hardcoded secrets

May be related to the existence of administrator interfaces
◦ Credentials to access the hidden API

May be related to other functionality, such as poorly implemented secure storage
◦ Using shared preferences or files to store sensitive material

Vuln. consists of not using hardware backed storage to store keys
◦ If they are in code, they can be obtained by decompilation

◦ they should be considered as public as an attacker may access them any time

◦ More common on older implementations targeting devices without an advanced TEE

Solution: good code practices and secret detection tools
◦ Automated tools (GitGuardian, truffleHog) may analyze repositories and trigger alarms automatically

Exercise: Search the Insecure Bank application for hardcoded secrets. Can you find them?
◦ What is the impact of said hardcoded secrets?
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Hardcoded secrets

Exercise: Search the Insecure Bank application for hardcoded secrets.
◦ What is the impact of said hardcoded secrets?

◦ Why are they there?

◦ How could they be avoided?



João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

A hardcoded constant is available on the code, used to encrypt/decrypt strings

Impact: while vendor will advertise that passwords are stored with AES-256, they are not securely stored

Hardcoded secrets
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Visibility Issues

Activities are usually internal to an application
◦ Called as the standard interaction workflow

Activities can be made available to be called directly
◦ Provides additional entry points to the application
◦ Should never be done for internal activities without further access control

◦ Developers may set activities as exported for debugging purposes
◦ Failure to remove such property may allow circumvention of the proper app operation

Activity visibility is set in the AndroidManifest.xml at compile time
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Visibility Issues

Exercise: Explore exported activities in the Insecure Bank app
◦ Which activities are available?

◦ Do they provide critical functionality without control?

◦ Test the activities available: “adb shell am start -n com.android.insecurebankv2/com.android.insecurebankv2.ACTIVITY_NAME”

◦ You may also use drozer

◦ Agent: https://github.com/mwrlabs/drozer/releases/download/2.3.4/drozer-agent-2.3.4.apk

◦ Server: docker run -it kengannonmwr/drozer_docker

◦ Then:

◦ Start drozer agent on mobile environment

◦ adb forward tcp:31415 tcp:31415

◦ docker run -it kengannonmwr/drozer_docker

◦ drozer console connect –server ANDROID_IP_ADDRESS

◦ run app.package.list

◦ run app.package.info -a com.android.insecurebankv2

◦ run app.package.attacksurface com.android.insecurebankv2

◦ run app.activity.start --component com.android.insecurebankv2 com.android.insecurebankv2.ACTIVITY_NAME
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Visibility Issues

Exercise: Explore exported activities in the Insecure Bank app
◦ Which activities are available?

◦ Do they provide critical functionality without control?

◦ Test the activities available: 
◦ adb shell am start -n activity_name

◦ run app.activity.start activity_name
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Content Provider Exposure

Content providers enable components to query data
◦ They abstract internal data management process and expose data by request

◦ Methods: query(), insert(), update(), delete()

◦ Similar to activities, if they are exported, data is available to other applications

Further access control mechanisms can be used:
◦ android:permission – provides specific access with good granularity (Read vs Write)

◦ android:path="/subpath": access can be restricted to a specific set of data

◦ Temporary permissions: Applications may grant access to others in runtime
◦ Ex: upon receiving a broadcast intent stating that a friendly application is installed and was started

<provider …>
…
<path-permission android:pathPrefix=“/subpath1” android:readPermission="com.app.SUBPATH1_READ_PERMISSION“ android:writePermission="com.app.SUBPATH1_WRITE_PERMISSION" />
<path-permission android:pathPrefix=“/subpath2” android:readPermission="com.app.SUBPATH2_READ_PERMISSION" android:writePermission="com.app.SUBPATH2_WRITE_PERMISSION" />

<grant-uri-permission android:path=“/subpath2”
</provider>
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Content Provider Exposure

Exercise: Interbank has one content provider

Check the implementation what action is triggered, and which data is provided
◦ You can query it with: 

◦ adb shell content query --uri content://com.android.insecurebankv2.TrackUserContentProvider/trackerusers

◦ run app.provider.query content://com.android.insecurebankv2.TrackUserContentProvider/trackerusers
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Intent based attacks

Intents are the basic mechanism of IPC within applications
◦ Consist of messages sent between components

◦ Intents may be broadcasted or explicit

◦ Intents may be subscribed to by components, even if from other applications

◦ Providers and receivers are declared in the AndroidManifest.xml
◦ Attackers can rapidly check which code may be vulnerable

Correct use of intents allows applications to trigger actions in response to events
◦ Examples: Show a popup, show an activity, trigger a synchronization process…

Bad use of intents allow attacker to:
◦ Intent Sniffing: Gain additional access to confidential data by sniffing intents exchanged by applications

◦ Intent Spoofing: Trigger specific processes in applications
◦ Potentially fuzz arguments or inject malicious payloads

◦ Potentially bypassing internal processes and controls
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Intent based attacks

Implicit Intents: Extensively used to trigger events based on device state change
◦ Intents are sent to all applications with a matching receiver (Broadcasted)

◦ Specify an action: NETWORK_STATE_CHANGED_ACTION, ACTION_AIRPLANE_MODE_CHANGED…

◦ They do not specify a destination component

◦ They should not have sensitive data

◦ However,… they are the easiest to implement as developers can struggle with when a specific component is specified
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Intent based attacks

Explicit Intents: Used for IPC directly between known components
◦ Intents are sent to destinations with a matching component

◦ They can have sensitive data

◦ However… they are more complex to implement as they require knowledge of the destination component
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A receiver is declared and exported

◦ If it was not exported, declaring an 
intent-filter will export it (danger)

◦ Any application may send an intent to this 
receiver
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onReceive() lacks validation, assumes two Strings in the intent and triggers an action

As an Intent is an IPC open to external entities, its content should not be trusted
◦ Fields may be missing
◦ Fields may have malicious payloads and even trigger further vulnerabilities

◦ Raimondas Sasnauskas, “Intent Fuzzer: Crafting Intents of Death”, Proceedings of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and Software and System 
Performance Testing, Debugging, and Analytics (PERTEA)July 2014 

◦ May also be relevant to check the intent source
◦ Additional authentication mechanisms can be added to intents: signatures and permissions
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Intent based attacks

Exercise: Explore how intent based attacks can be exploited in this app
◦ Drozer:

◦ Battery: run app.broadcast.sniff --action android.intent.action.BATTERY_CHANGED

◦ Bank app: run app.broadcast.sniff --action "theBroadcast"

◦ run app.broadcast.send --action theBroadcast --extra string ARG VAL

Fix 1 – Permission

Fix 2 – Signature
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Insecure Logging mechanism

Android has a centralized log to where applications may write information
◦ Useful for debugging and tracking errors, mostly useless for common users

◦ Left over debugging lines in code may expose too much information

◦ Accessible to applications in rooted devices and using adb logcat
◦ On rooted devices: pm grant <pkg> android.permission.READ_LOGS

Impact:
◦ Sensitive information is exposed to applications or external attackers
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Insecure Logging mechanism

Exercise: use adb logcat and search for sensible strings
◦ Interact with the applications to observe logs

◦ What is the impact?
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Exercise

Can you replicate these methods to other applications publicly available?

UA Mobile?

CantinUA?

CM Aveiro?

Others?
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