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ABSTRACT

The offering of anonymity in relational databases has at-
tracted a great deal of attention in the database community
during the last decade [4]. Among the different solution ap-
proaches that have been proposed to tackle this problem,
K–anonymity has received increased attention and has been
extensively studied in various forms. New forms of data
that come into existence, like location data capturing user
movement, pave the way for the offering of cutting edge ser-
vices such as the prevailing Location Based Services (LBSs).
Given that these services assume an in–depth knowledge of
the mobile users’ whereabouts it is certain that the assumed
knowledge may breach the privacy of the users. Thus, con-
crete approaches are necessary to preserve the anonymity of
the mobile users when requesting LBSs.

In this work, we survey recent advancements for the of-
fering of K–anonymity in LBSs. Most of the approaches
that have been proposed heavily depend on a trusted server
component – that acts as an intermediate between the end
user and the service provider – to preserve the anonymity
of the former entity. Existing approaches are partitioned
in three categories: (a) historical K–anonymity, (b) loca-
tion K–anonymity, and (c) trajectory K–anonymity. In each
of these categories we present some of the most prevalent
methodologies that have been proposed and highlight their
operation.

1. INTRODUCTION
The enormous advances in positioning technologies like GPS,
GSM, UMTS and RFID, along with the rapid developments
in the wireless communications industry, have made possible
the accurate tracking of user location at a low cost [3]. The
increased tracking accuracy gave rise to a novel class of ap-
plications which are based on user location, spanning from
emergency response and “search & rescue” services (such
as E–911), to services that automate everyday tasks, such
as online user navigation to avoid traffic jams and/or bad
weather conditions, way–finding, store–finding and friend–
finding, as well as mobile commerce and surveying. All
these services, including localized news and state–of–the–
art location–based games that merge physical and virtual
spaces, require an extensive use of location data and are
collectively known as Location Based Services (LBSs).

The benefit of LBSs both to the individual subscribers and
to the community, as a whole, is undeniable. With respect

to the public welfare, the collection of location data by a
governmental or other public agency may enhance the pro-
cess of decision making regarding tasks such as urban plan-
ning, routing, wildlife rescuing and environmental pollution.
As is evident, the new computing paradigm is changing the
way people live and work. However, it also poses a series of
challenges as it touches upon delicate privacy issues [1].

1.1 Privacy challenges in LBSs
The offering of LBSs requires an in–depth knowledge of the
subscribers’ whereabouts. Thus, with untrustworthy service
providers the deployment of LBSs may breach the privacy
of the mobile users. Consider, for example, a service request
originating from the house of a user. The request contains
sufficient information to identify the requester, even if it
lacks of any other identification data (e.g., the user ID, the
user name, etc.). This is true since the mapping of the exact
coordinates that are part of the user request to a publicly
available data source of geocoding information can reveal
that the request originated from a house and thus increase
the confidence of the service provider that the requester is
a member of the household. Moreover, if a series of re-
quests for LBSs are matched to the same individual then it
is possible for the service provider to identify places that this
user frequently visits, reveal his/her personal habits, polit-
ical/religious affiliations or alternative lifestyles, as well as
build a complete profile of the user based on the history of
his/her movement in the system. Consequently, without the
existence of strict safeguards, the deployment of LBSs and
the sharing of location information may easily lead the way
to an abuse scenario, similar to Orwell’s Big Brother society.
To avoid this situation and adequately protect the privacy
of the users when requesting LBSs, sophisticated algorithms
have to be devised.

1.2 Organization of the rest of the paper
The rest of this work is organized as follows. In Section 2
we present the centralized model for the offering of privacy
in LBSs along with an example of its operation. Section 3
highlights the working assumptions that are used by most of
the state–of–the–art privacy preserving approaches in LBSs.
Following that, in Section 4 we present a taxonomy of the
existing centralized K–anonymization approaches for the of-
fering of privacy in LBSs. Finally, Section 5 concludes this
work.
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Figure 1: The centralized model for privacy in LBSs.

2. THE PRIVACY MODEL
Figure 1 presents a big picture of the centralized model for
privacy in LBSs. In this model, we consider a population of
users who are supported by some telecommunication infras-
tructure, owned by a telecom operator. Every user in the
system has a mobile device that periodically transmits a
location update to some traffic monitoring system residing
in a trusted server of the telecom operator. The commu-
nicated location update contains the current location (and
time) of the user and is stored by the trusted server. A set of
LBSs are available to the subscribed users through service
providers that collaborate with the telecom operator. We
assume that these service providers are untrusted; if a user
submits a request for an LBS directly to the service provider
then his/her identity can be revealed and his/her privacy can
be compromised. Motivated by this fact, the centralized pri-
vacy model requires that every user request for an LBS has
to be submitted to a trusted server of the telecom operator
via a secure communication channel. The role of the trusted
server (anonymizer) is to filter the incoming user requests
and to produce anonymous counterparts that can be safely
forwarded to the service providers in order to be serviced. To
produce the anonymous counterpart to an original user re-
quest, the trusted server has to incorporate algorithms that
(a) remove any obvious identifiers that are part of the user
request (e.g., ID, name) and (b) effectively transform the
exact location of request into a spatiotemporal area (a.k.a.
the area of anonymity) that includes a sufficient number of
nearby users registered to the system so as to prevent the
attacker from locating the requester. These users formulate
the anonymity set of the requester.

2.1 An example of operation
The operation of the centralized privacy model is exempli-
fied in Figure 2, where we assume a user Bob who asks
for the nearest betting office Bi to his current location.
This is a typical nearest neighbor query that is commonly
met in LBSs. Bob forwards his query (request) Q to the
anonymizer. Then the anonymizer, who has knowledge of
the current location of each user in the system, identifies 3
users who are near Bob and encloses all four users in a region
R. Subsequently, instead of sending Bob’s location to the
LBS provider, the anonymizer sends region R. When the
LBS service provider receives R it computes all the betting
offices that can be the nearest neighbor of any point in R.
It is important to notice that although the service provider
is certain that Bob is located within R, it has no means to
identify the exact location of Bob in R. Using its database,
the service provider generates a candidate set of answers (i.e.
{B1, B2, B3, B4}) and forwards it to the anonymizer. The
anonymizer uses the actual location of Bob inside R to filter
out all the false hits and forward the actual nearest neighbor

Figure 2: A use–case scenario of the centralized model.

(in this case B1) to Bob. This step concludes the provision
of the LBS in a privacy aware manner. The way that region
R is formulated, as well as the privacy guarantees that are
offered to the requester by the system, are based on the spe-
cific privacy methodology that is employed by the trusted
server.

3. WORKING ASSUMPTIONS AND

THREAT MODEL
Several centralized K–anonymity approaches have been pro-
posed for the offering of privacy in LBSs. In what follows,
we present the working assumptions about the capabilities of
the attacker that are employed by most of these approaches.
The knowledge of the assumptions is necessary to compare
the different approaches in terms of privacy guarantees that
they offer to the requesters of LBSs. Generally, the attacker
is assumed to have the following capabilities:

1. The attacker can intercept the region where anonymity
is offered to the requester of an LBS. This implies that
the LBS service provider is untrustworthy.

2. The attacker has knowledge of the algorithms that are
used by the trusted server to offer privacy in LBSs.
This situation is common in the security literature
where algorithms are typically publicly available.

3. The attacker can obtain the current location of all the
users in the system. This assumption is motivated by
the fact that users may often issue queries from easily
identifiable locations. Since it is difficult to model the
exact amount of knowledge that an attacker may have
at his/her disposal, this assumption dictates that the
privacy methodology must be provably secure under
the worst–case scenario.

4. The attacker tries to breach the location privacy of the
users by using only current location data; he/she is
unaware of any historical information about the move-
ment of the users, as well as any behavior patterns of
particular clients (e.g., a user is often asking a partic-
ular query at a certain location or time).
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(a) Data–dependent cloaking. (b) Space–dependent cloaking.

Figure 3: Cloaking strategies for the offering of K−anonymity in LBSs.

4. TAXONOMY OF EXISTING

K–ANONYMIZATION APPROACHES
The main body of research for the offering of privacy in
LBSs includes approaches that are based on the notion of
K–anonymity. K–anonymity, originally proposed by Sama-
rati and Sweeney [11, 12] in the context of relational data,
requires that “each data release must be such that every
combination of values of private data can be indistinctly
matched to at least K individuals”. In this sense, K–anonymity
requires that every record in a released dataset is indistin-
guishable from at least K–1 other records with respect to a
certain set of identifying variables. In the context of LBSs,
the identifying variable is the location of the individuals
when requesting LBSs; releasing a request of an individual
for an LBS to an untrusted third party should make certain
that the actual location of request cannot be associated (at
least with a high probability) with the identity of the re-
quester. To satisfy K–anonymity in LBSs, the most widely
adopted anonymization strategy is cloaking. In cloaking,
the actual location of request is transformed into a bounded
area that is large enough to contain the requester along with
(at least) K–1 other users. Cloaking ensures that the iden-
tity of the requester cannot be disclosed with a probability
that is significantly larger than 1/K, among K–1 other users.
Some of the most prevalent cloaking strategies that general-
ize the actual locations of request to spatially bounded ar-
eas, are presented in Figure 3. They can be partitioned into
two groups: data–dependent cloaking and space–dependent
cloaking methodologies.

4.1 Data–dependent cloaking
Data–dependent cloaking strategies formulate the region of
anonymity based on the actual location of each user in the
system and his/her distance from the location of request.
Specifically, distance–based cloaking algorithms (e.g., [1, 7,
15]) retrieve the K–1 nearest neighbors of the requester and
generate a region that includes all the K users. In K–bucket
cloaking (e.g., [2, 9]) the users are arranged into groups of
K and the anonymity region is computed as the Minimum
Bounding Rectangle (MBR) that contains the K users in the
group of the requester.

4.2 Space–dependent cloaking
Space–dependent cloaking strategies take into consideration
the total area that is covered by the anonymizer to formulate
the regions of anonymity. Specifically, grid–based cloaking
strategies (e.g., [6,8,10]) partition the area in a grid fashion

Figure 4: An example of Clique Cloak.

and generate the region of anonymity by retrieving the users
in each cell of the grid (starting from the cell of the requester
and moving to neighboring cells) until at least K users are
found. On the other hand, region–based cloaking strategies,
such as [5], use the spatial properties of the area to generate
rectangles centered at the location of request and to utilize
them for the offering of K–anonymity.

In what follows, we present the different research directions
for the offering of K–anonymity in LBSs. Alongside the pre-
sented methodologies, we include some examples to demon-
strate their operation.

4.3 Location K–anonymity
Location K–anonymity approaches (e.g., [5, 8–10]) protect
user privacy by utilizing the current location (instead of the
history of collected locations) of each user in the system.
They operate on LBSs that require a single location trans-
mission from the requesting party in order to be successfully
provided (e.g., store–finder, friend–finder, etc.), instead of
the communication of multiple location updates. The dif-
ferent cloaking strategies that have been proposed for the
offering of location K–anonymity are presented in Figure 3.
In what follows, we detail over some of the most popular
approaches in this category.

Clique Cloak [5] is a graph–based (region–based) approach
that mutually anonymizes multiple incoming requests for
LBSs. For each query that is received for servicing, the al-
gorithm generates a rectangle centered at the location of
the requester, with its sides being parallel to the considered
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Figure 5: An example of NN–Cloak.

x and y–axis, respectively having Δx and Δy extents. The
new query is then marked as a node in a graph for as long as
it awaits for its anonymization. Two vertices (queries) in the
graph are connected together if the corresponding users fall
in the rectangles of each other. An edge of the graph demon-
strates that the requester of each of the two queries can be
included in the computed anonymity set of the other, and
thus, a K–clique of the graph shows that all the correspond-
ing K requests can be anonymized together (thus offering
K–anonymity to all the K users that participate in the K–
clique). Finally, tight to each request is a temporal interval
Δt that defines the maximum amount of time that this re-
quest can be retained by the system for its anonymization.
If a K–clique cannot be found within Δt then the request is
dropped as unserviceable. Figure 4 demonstrates the opera-
tion of Clique Cloak in the case scenario where three queries
for LBSs (located at U1, U2 and U3) have been synchronously
submitted to the trusted server. Assuming that K = 2, the
generated rectangles for U1 and U2 fall in each other and
thus they form a 2–clique in the graph. As a result, the
MBR enclosure of the respective rectangles (shown here in
gray) represents the Anonymity Spatial Region (ASR) where
2–anonymity is offered to these users. On the other hand,
the request of U3 has to wait in the system until a new
query (formulating a 2–clique with U3) arrives. As one can
observe, Clique Cloak may affect the quality of service that
is offered to the users as the servicing of some queries may be
substantially delayed, while other queries may be dropped
as unserviceable. The approaches that follow do not suffer
from these shortcomings.

Center Cloak [9] is a distance–based approach that provides
a näıve solution to K–anonymity in LBSs. In Center Cloak,
the K–1 nearest neighbors of the requester are retrieved and
the ASR is computed as the MBR enclosure of all the K
users. By construction, Center Cloak suffers from what is
known as the “center–of–ASR” attack; the identity of the
requester can be accurately guessed with a probability that
far exceeds 1/K as he/she is expected to be close to the cen-
ter of the ASR. The “center–of–ASR” attack is an instance
of a more general problem that is worth mentioning. Since
cloaking algorithms are expected to be publicly available
(see assumption 2 of Section 3), attackers can easily exploit
any implementation decisions with respect to the placement
of the requester to the generated ASRs. As an effect, sev-
eral of the currently available approaches suffer from similar
kinds of attacks.

Figure 6: An example of Casper.

A randomized variant of Center Cloak, which offers increased
uncertainty regarding the location of the requester in the
generated ASR, is Nearest Neighbor Cloak (NN–Cloak) [9].
In NN–Cloak the ASR is formulated as follows: Given a user
query for an LBS, NN–Cloak first retrieves the K–1 near-
est neighbors of the requester. Second, it randomly selects
one among the K users and identifies his/her K–1 nearest
neighbors. Finally, the K–ASR is constructed as the MBR
enclosure of the second set of K users, augmented (if neces-
sary) to include the requester. Figure 5 presents an example
where 3–anonymity is offered to user U1 by using NN–Cloak.
First, U1 formulates set S1 = {U1, U2, U3} with his/her two
nearest neighbors. Second, NN–Cloak randomly selects U3

from S1 and computes his/her two nearest neighbors in the
system. This leads to set S2 = {U3, U4, U5}. Finally, the
MBR of S2 is augmented to include the requester U1, lead-
ing to the 4–ASR for U1 that is shown in Figure 5. Since the
probability of selecting the requester from S1 when formu-
lating S2 is at most 1/K (due to random choice), NN–Cloak
is not vulnerable to the “center–of–ASR” attack.

Casper [10] is one of the most popular grid–based approaches
to location K–anonymity. In Casper the entire area that is
covered by the anonymizer is divided in a grid–fashion and
organized in a pyramid data structure of layers that is simi-
lar to a Quad–tree [13] (see the pyramid structure in Figure
3(b)). The top layer of the pyramid contains the entire
area, whereas the lowest level of the pyramid collects the
finest–grained granularity of the partitioning. Each cell in
the lowest level of the pyramid has a minimum size that cor-
responds to the anonymity resolution. When a new query for
an LBS is received by the trusted server, Casper locates the
lowest–level cell in the pyramid that contains the requester
and examines if this cell also contains K–1 other users. If
the cell contains enough users then it becomes the K–ASR.
Otherwise, Casper searches the horizontal and the vertical
neighbors of this cell to identify if the number of users in each
of these cells, when combined with the number of users in the
cell of the requester, suffice for the provision of location K–
anonymity. If this is true, then the corresponding union of
cells becomes the K–ASR. Else, Casper moves one level up in
the pyramid to retrieve the parent (cell) of the cell of request
and repeats the same process until the K users that will for-
mulate the ASR are found. Figure 6 provides an example
of this cloaking operation. Assuming a request coming from
cell 〈(0, 2), (1, 3)〉 (where (0,2) are the lower–left and (1,3)
the upper–right coordinates of the cell) with an anonymity
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Figure 7: An example of Hilbert Cloak.

requirement of K = 2, the returned ASR is the same cell.
In the event that a query with the same anonymity require-
ments is issued from cell 〈(1, 2), (2, 3)〉 the returned ASR is
the union of cells 〈(1, 2), (2, 3)〉 ∪ 〈(1, 3), (2, 4)〉.
Interval Cloak [8] is very similar to Casper as it also par-
titions the total area that is covered by the trusted server
into equi–sized quadrants and organizes this information in
a Quad–tree structure. However, Interval Cloak does not
consider the neighboring cells at the same level when com-
puting the ASR, but instead it directly ascends to the an-
cestor level in the pyramid. As an example, in Figure 6, a
request for an LBS that is issued by U3 or U4 will generate
the ASR 〈(0, 2), (2, 4)〉 (instead of 〈(1, 2), (2, 4)〉 for Casper).
As is evident, Casper is more effective in producing com-
pact ASRs when compared to Interval Cloak. However, as
is proven in [9], both Interval Cloak and Casper are secure
only for uniform data distributions.

Hilbert Cloak [9] does not suffer from this shortcoming as it
generates the same K–ASR, no matter who among the par-
ticipants of the anonymity set requested the service. The
proposed approach is based on K–bucket cloaking; it dy-
namically arranges the users into groups of K and computes
the ASR as the MBR enclosure that contains the K users
in the group of the requester. Hilbert Cloak creates an one–
dimensional mapping of the position of each user. In the
proposed mapping, locations that are near each other in the
two–dimensional plane, are expected to also lie near each
other to its one–dimensional transformation. For each re-
quest with an anonymity requirement of K, Hilbert Cloak
partitions each K users in the system into a bucket accord-
ing to their Hilbert values. Following that, Hilbert Cloak
retrieves all the K–1 users that lie in the same bucket as the
requester, and formulates the K–ASR as their MBR enclo-
sure. An example of this operation is presented in Figure 7,
where we consider 10 users whose IDs are sorted in ascend-
ing order based on their Hilbert values. Given a query for
an LBS from U3 with an anonymity requirement of K = 3,
Hilbert Cloak uses the rank of the user (here 3) to dynami-
cally identify the bucket in which he/she is partitioned (here
is the first bucket). Then, it retrieves all the users who are
partitioned in the same bucket as the requester (i.e. U1, U2

and U3) and returns their MBR as the computed ASR for
this request (see the 3–ASR shaded region in Figure 7). No-
tice that any query with an anonymity requirement of K = 3
originating from any of U1, U2, would generate the exact
same 3–ASR as the one that is generated for U3. Further-
more, it must be noted that Hilbert Cloak can generate the
bucket that contains the requester on–the–fly based on the
rank of each user in the system.

4.4 Historical K–anonymity
Historical approaches to K–anonymity (e.g., [1,14,15]), keep
track of the movement history of each user in the system
and utilize this information when building the anonymity
regions for the user requests. Compared to other method-
ologies for the offering of K–anonymity in LBSs, in historical
K–anonymity approaches the participants of the anonymity
set are selected based on their history of movement in the
system, with the requirement that at some time in their
history of movement these users were close to the point of
request. Ref. [14] states this observation as “using users’
footprints instead of their current positions, for cloaking”.

Refs. [1,15] consider the area that is covered by the trusted
server as a set of Places–of–Interest (POIs) defined for each
user in the system. Each POI has a spatial extent and can
be related to an unanchored temporal interval. It represents
a place that is frequently visited by a user based on his/her
history of movement in the system, as well as the approxi-
mate time–of–day (represented as a time interval) of these
visits. A series of POIs (along with their corresponding time
intervals) that are frequently visited in sequel by a user can
be considered as hazardous with respect to the privacy of
the user when requesting LBSs, as such requests can easily
disclose his/her identity.

The trusted server monitors the users to identify when they
request LBSs from any of their POIs. When a user trans-
mits a request for an LBS from one of his/her POIs, the
trusted server computes an area along with a time interval
that contains the requester, as well as K–1 other users who
happened at sometime in the past to pass by the location
of the request. The computed area is said to be (histori-
cally) K–anonymous as it protects the requester by guar-
anteing that his/her location cannot be identified with a
probability that is larger than 1/K, among the other K–1
users. The whole anonymization process is guided by a set
of spatial and temporal constraints; the spatial constraints
require that the generated region of anonymity is within
some reasonable spatial bounds so as to allow the provision
of the requested LBS, while adequately hindering the actual
location of request. On the other hand, the temporal con-
straints impose a barrier on how back in time (starting from
the point of request) should the history of movement of all
the users in the system be searched, so as to retrieve the
participants of the anonymity set. Following the computa-
tion of the anonymity region, the trusted server forwards the
request containing the cloaked user location to the service
provider for servicing. When a subsequent request is re-
ceived from the same user, the trusted server tries to match
this request to the next POI in his/her sequence of POIs,
and if the match is successful it recomputes the area along
with the time interval that contains the requester, as well as
his/her K–1 original neighbors.

Ref. [14] uses the history of movement of all the users in
the system to apply a recursive top–down partitioning of
the area that is covered by the trusted server into equi–size
quadrants. Each cell of the partitioning is divided into quad-
rants up to the point that it contains at most N users who
have visited this cell sometime in their movement history.
By using this structure alongside a hash table that records
the user IDs and the trajectories for the users of each cell,
the proposed approach requires that each user who wishes to
request an LBS has to first communicate a base trajectory
to the trusted server. A base trajectory T = {c1, c2, . . . , cn}

SIGKDD Explorations Volume 12, Issue 1 Page 7



x 
   y         y 

               J                D                   E      B       F 

             A       B        E             C          J        I 

              G       H                      D          A 

      C             I         K                G           K     H 

At time ti 

At time ti+1 At time ti+2 

     y 

                G       J         I 

                   D       A      H 

        F      B     E   C       K 

F 

x x 

(a) The attack scenario.

x 
   y         y 

               J         D                          E      B       F 

             A       B        E             C          J        I 

              G       H                      D          A 

            C       I         K                G           K     H 
x x 

At time ti 

     y 

                G       J         I 

                   D       A      H 

        F      B     E   C       K 

F 

At time ti+1 At time ti+2 

(b) Blocking the attack.

Figure 9: The query tracking attack and its elimination.

Figure 8: K–anonymity based on historical movement.

defines the itinerary that the user will follow in the system,
where each ci corresponds to a location update on the tra-
jectory on which the user will move. In response, the trusted
server computes a new trajectory T ′ = {C1, C2, . . . , Cn}
that provides K–anonymity to the user when using the LBS
throughout his/her declared itinerary. Each Ci in T ′ corre-
sponds to a region of (historical) K–anonymity that contains
the requester (base trajectory) along with K–1 users based
on their historical trajectories in the system. Whenever the
user arrives at ci he/she informs the trusted server who, in
turn, uses the K–anonymity region of Ci to continue to pro-
tect his/her privacy. Figure 8 demonstrates the operation
of the algorithm for the offering of historical 3–anonymity
to a requester of an LBS based on his/her computed base
trajectory.

4.5 Trajectory K–anonymity
Trajectory K–anonymity approaches (e.g., [2, 6, 7]) are ap-
propriate for preserving the privacy of the users who request
LBSs that cannot be offered in just a single communication
of the user with the service provider. As an example, con-
sider a car navigation service, in which the current position
of the user has to be communicated to the service provider
for as long as the user travels to his/her destination (so that
he/she receives updated directions). The approaches of this
category are responsible for protecting the whole trajectory
of the requester from the time of request until the service
provision. Such services are called continuous and the corre-

sponding requests are termed as continuous queries. It is im-
portant to mention that contrary to historical K–anonymity
approaches (such those of [1,14]), which can also protect the
user trajectory by providing K–anonymity to the requester
of LBSs, trajectory K–anonymity approaches generate the
K–ASRs by utilizing the current instead of the historical
movement of the users in the system to adequately cover up
the trajectory of the requester. In what follows, (a) we mo-
tivate the necessity for trajectory K–anonymity methodolo-
gies by discussing the limitations of location K–anonymity
approaches, and (b) we provide a partitioning of the trajec-
tory K–anonymity algorithms along two principal directions,
as well as discuss some of the most prevalent approaches in
each direction.

4.5.1 Why trajectory K–anonymity? —
Query tracking in LBSs

Location K–anonymity approaches suffer from correlation
attacks which prevent them from protecting the requesters
of continuous queries. As indicated in [2], the identity of the
requester can be easily revealed based on the participants of
his/her anonymity set. Figure 9 demonstrates how this is
possible. Imagine a query submitted at time ti by user A for
a continuous service. The applied location cloaking strategy
(e.g., [8,10]) generates the 5–ASR shown in Figure 9(a) that
includes the requester along with four of his/her neighbors:
B, C, D and E. As the user moves, he/she needs to transmit
a new location update to the service provider for the contin-
uation of the service provision. Thus, at time ti+1 the user
sends a new query to the trusted server containing his/her
new location. However, the users in the neighborhood of
the requester have also moved in the meanwhile and thus
the new 5–ASR that is produced by the employed location
K–anonymity algorithm (i.e. {A, B, F, G, H}) has only user
B in common with the previously generated ASR. As a re-
sult, if an attacker knows the two ASRs he/she can safely
conclude that the requester is either A or B, which signifi-
cantly reduces the actual degree of anonymity that is offered
to A from 1/5 to 1/2. In the next location transmission, at
ti+2, the identity of the requester is revealed since no other
participant in his/her current ASR was also part of all the
previous ASRs.
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To alleviate from correlation attacks, existing approaches to
trajectory K–anonymity ensure that all the K participants of
the first K–ASR will also participate in all the subsequently
computed K–ASRs, as produced by the cloaking algorithm.
This way of eliminating the query tracking attack is pre-
sented in Figure 9(b).

4.5.2 Generic approaches to trajectory
K–anonymity

Generic approaches to trajectory K–anonymity do not take
into consideration any particular movement behavior of the
requester of an LBS (as well as of the other users in the sys-
tem), when providing him/her with trajectory K–anonymity.
Instead, all requests for LBSs are handled in exactly the
same manner by the trusted server, no matter what the lo-
cation of request is or the path that the user follows in the
system during the LBS provision.

Ref. [2] proposes the first algorithm for trajectory K–anonymity
in LBSs. The main idea is to require that a user belongs in
a group of at least K–1 other users prior to sending a con-
tinuous query for an LBS. The generated K–ASR in each
location transmission of the user is computed as the MBR
enclosure of all the users in the group of the requester, based
on their location in the system. It is important to mention
that while a request for an LBS is in progress, no grouped
user that participated to the original anonymity set of the
requester is allowed to leave the group, as this action would
jeopardize the privacy of the requester.

4.5.3 Personalized approaches to trajectory
K–anonymity

Personalized approaches to trajectory K–anonymity utilize
the history of movement of all the users in the system to cope
with correlation attacks in continuous user queries. They
differ from generic approaches to privacy in LBSs, primarily
due to the following reasons: (a) they drop assumption 4
(Section 3) by consider attackers who have knowledge of the
users’ movement behavior in the system and can use their
knowledge of the frequent movement patterns of the users to
breach user privacy, (b) they depict the movement of each
user u in the system as a continuous function f(u, x, y, t),
instead of a set of individual locations and times, (c) they
automatically derive a set of frequent movement patterns
per user based on his/her history of movement in the sys-
tem, which are subsequently used to protect his/her privacy
when requesting continuous LBSs, and (d) they can offer
trajectory K–anonymity to the requesters of LBSs by as-
suming an underlying network topology of user movement,
instead of a grid–based, free–terrain solution.

Ref. [6] provides a trajectory K–anonymity solution that
uses the history of movement of the users in the system
to derive a set of frequent mobility patterns per user. Each
of these patterns corresponds to a route (instead of a se-
quence of POIs and related time periods, as in [1]) that is
frequently followed by the corresponding user in the system
and is stored as an f(x, y, t) function, having both a spatial
and a temporal extent. The proposed algorithm identifies
those frequent routes of a user that are rarely followed by
many other users in the system. These routes are termed
as unsafe for this user, as they can disclose his/her iden-
tity when requesting LBSs from within any of them. In [6]
a grid–based, free–terrain solution is employed that utilizes
the computed unsafe routes of the users, in order to provide

them with K–anonymity when requesting LBSs.

In [7] a network–based privacy model is proposed that con-
siders an underlying network of user movement in order to
derive the unsafe routes of the users and to offer trajectory
K–anonymity to the requesters of LBSs. With respect to the
offering of K–anonymity, the proposed approach considers
two spatial cloaking strategies, depending on the location of
the requester at the time of request, as well as his/her subse-
quent locations until the provision of the service. In partic-
ular, K–present (the so–called weak) trajectory anonymity
identifies K–1 users that are close to the requester at the
time of request and thus could have issued the request for
the LBS. On the other hand, K–frequent (strong) trajectory
anonymity, collects the subjects who were near the requester
at the time of request and for whom the currently traveled
route of the requester is also frequent.

5. CONCLUSIONS
In this paper, we presented a survey on the state–of–the–
art centralized K–anonymity approaches for the offering of
privacy in LBSs. The aim of the presented methodologies
is to protect the location of the requesters of LBSs in both
static and continuous queries. On the other hand, a new
and very prominent body of research regards K–anonymity
methodologies that protect the content of the user query in
addition to the location of the user. We believe that future
work in this research direction will lead to more robust and
thorough methodologies that better protect the privacy of
the user when requesting LBSs.
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