N
Check for
Updates

Minimal Information Disclosure with Efficiently Verifiable

Credentials

David Bauer Douglas M. Blough David Cash
Georgia Institute of Georgia Institute of Georgia Institute of
Technology Technology Technology

School of ECE

ABSTRACT

Public-key based certificates provide a standard way to prove
one’s identity, as attested by some certificate authority (CA).
However, plain certificates provide a binary identification:
either the whole identity of the subject is known, or noth-
ing is known. We propose using a Merkle hash tree struc-
ture, whereby it is possible for a single certificate to contain
many separate claims or attributes, each of which may be
proved independently, without revealing the others. Addi-
tionally, we demonstrate how trees from multiple sources can
be combined together by modifying the tree structure. This
allows claims by different authorities, such as an employer or
professional organization, to be combined under a single cer-
tificate, without the CA needing to know (or to verify) all of
the claims. In addition to describing the hash tree structure
and protocols for constructing and verifying our proposed
credential, we formally prove that it provides unforgeabil-
ity and privacy and we present performance results demon-
strating its efficiency. As services move from user names and
passwords to attribute-based identity verification, efficiency
and scalability of claims verification will become a major
issue. We have implemented a prototype client-server sys-
tem, deployed the prototype in Emulab, and evaluated the
server-side throughput for attribute-based identity verifica-
tion. The results show that our approach can perform about
200 identity verifications per second, while the best compet-
ing approach can perform only about 2-5 verifications per
second. Our approach is, therefore, better suited to today’s
high-volume Web-based services that demand the highest
possible throughput.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms

Algorithms, Performance, Design, Security, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DIM’08, October 31, 2008, Fairfax, Virginia, USA.

Copyright 2008 ACM 978-1-60558-294-8/08/10 ..$5.00.

) School of ECE
gte810u@mail.gatech.edu dblough@ece.gatech.edu

15

College of Computing
cdc@cc.gatech.edu

Keywords

Identity management, identity assertion, credential, hash-
tree, Merkle tree, PKI, privacy

1. INTRODUCTION

Personal information is increasingly used to establish iden-
tity and authorize transactions in the digital world. At the
same time, identity theft and fraud, based on unauthorized
disclosure and misuse of personal information, are rampant
[15], and individuals are increasingly concerned about pro-
viding this information to every digital entity with which
they establish a relationship. The research described in this
paper is based on several key principles of identity manage-
ment. First, users should have the maximum control possi-
ble over what personal information of theirs is disclosed in
any given interaction. Second, more reliance can be placed
on personal information that is verified by trusted third par-
ties than in self-reported information. And third, if verified
personal information is to be used, mechanisms to prevent
that information from being copied and misused by unau-
thorized parties are essential.

We assume an architecture in which there are identity
providers that verify users’ personal information and sup-
ply long-lived, off-line credentials that the users can show to
service providers (also known as relying parties) [18]. Cre-
dentials are a common mechanism for verifying personal
information in everyday life. Most people carry multiple
physical credentials with them, from drivers’ licenses to in-
surance cards to credit cards. A credential describes some
set of attributes about the holder. For the obvious ex-
ample, a driver’s license states that the holder is licensed
to drive a vehicle in the licensing state. However, due to
drivers’ licenses being almost universal, they are used as a
general credential. As such, driver’s licenses often include
unnecessary information, such as the holder’s date of birth,
address, height, organ-donor status, and sometimes even
social-security number. Electronic credentials can be sim-
ple, like a user-name and password, or more complex, like a
public key infrastructure (PKI) certificate. A PKI certificate
is an electronic document that holds an identity and a pub-
lic key, and that is signed by a certificate authority (called
the issuer). The user holds the associated private key to
prove that they are the legitimate holder of the certificate.
The user-name and password combination is the most widely
used scheme, because of its simplicity. However, this scheme
also provides no direct information about the user. A user-
name must be attached to a previously made account, and
some other form of credential must be used to tie an identity

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1456424.1456428&domain=pdf&date_stamp=2008-10-31

to the account. Such accounts are very seldom shared be-
tween different domains, leading users to accumulate many
different accounts, often with different user-names and pass-
words. PKI certificates for users are less common, but can
solve the problem of needing to keep track of many different
user-names and passwords.

Minimal information disclosure in any given interaction is
desirable from a user’s perspective, and may even be neces-
sary for a given technology to be widely adopted [9]. Clearly,
if a user wants to release the minimal amount of personal
information on a given interaction, this rules out a single
credential approach, in which each user maintains one cre-
dential containing all of their personal information and uses
that credential for every interaction. As in [9], we say that
a user makes a claim about herself when she gives infor-
mation about one or more personal attributes to a digital
entity. Due to the wide variety of personal information that
is used in digital interactions, the number of different possi-
ble claims is extremely large. The problem to be solved is,
therefore, to provide an efficient and reliable mechanism that
allows users to assert arbitrarily many (or at least a large
number of) verifiable claims over a sequence of interactions
with different digital entities.

An example of minimal information disclosure is the prob-
lem of verifying that a user is at least 18 years of age.
Clearly, verifying the user’s date of birth is sufficient but
not necessary, and would reveal a very sensitive piece of
personal information that could assist an identity thief in
masquerading as that user. We refer to the claim that a
user "is at least 18 years of age” as a micro-claim, with the
(macro-)claim in this case being "the user’s date of birth is
xx/xx/xxxx”. Many different micro-claims can be derived
from a single claim, e.g. the user is "at least 18", ”at least
217, 7at least 35”7, "at least 65”7, etc. Another example of
the macro- to micro- expansion would be a street address,
which can be broken into country, state, county, city, zip
code, neighborhood, street name, street number, apartment
number, congressional district, school district, etc. In a more
technical example, the micro-claims could consist of a large
number of one-time use tokens, such as one-time use credit
card numbers.

We adopt an approach where a large set of micro-claims is
enumerated statically, and updated dynamically as needed.
Instead of generating and maintaining a single credential per
micro-claim, which is extremely inefficient from the stand-
points of storage space, bandwidth, and computation time,
we propose a method wherein a single credential can be
maintained that allows the user to dynamically specify an
arbitrary subset of micro-claims for a given interaction with-
out revealing the other micro-claims. We expect well-defined
standards and automated tools to handle most of the details
associated with the micro-claims. We also include in this cre-
dential, and the protocols that use it, mechanisms to make it
difficult for an attacker to make a copy of the credential and
masquerade as the user. In addition to allowing the user to
update her set of microclaims as certified by one authority,
the credential allows information that is verified by different
identity providers to be combined in one structure. This
allows users to spread out their personal information across
different identity providers, thereby lowering their risk when
one of their identity providers experiences a security breach.
The details of this new credential mechanism and its associ-
ated protocols are provided in the remainder of this paper.

16

Defining the level of privacy needed by users is a subtle
and hotly debated issue. One attempt to quantify privacy
is the idea of linkability. T'wo things—events, transactions,
credentials, claims, or users—are linkable if they are known
to have an underlying connection. It is necessary for some
things to be linked; for example, if a claim is not linked
to any user or evidence, it is meaningless. But more often
the focus is on unlinkability—when things can’t be recog-
nized or shown to be connected, even when they are. For
example, consider buying an item with cash versus buying
an item with a credit card. When using cash, there is usu-
ally no record of who bought the item. If several items are
bought in separate transactions, it usually cannot be deter-
mined that they were bought by the same person. When
using a credit card, there is a clear record of who bought
the item. Items purchased at different times and even at
different places may be identified as having been bought by
the same person. Additionally, the real name/identity of
that person is known and usually printed right on the re-
ceipt. This is a clear invasion of privacy, and yet credit
cards are still extremely popular. Credit cards are popular
because they are convenient, and this invasion of privacy is
accepted because it is necessary to reduce fraud and abuse
in the system.

Our goal here is to design systems that preserve the user’s
privacy as much as possible, while remaining auditable from
the viewpoint of the service providers. That is, a user should
have control over which claims are presented, but we do not
attempt to make repeated uses of the user’s credential un-
linkable. This concession to social practicality gives a strong
engineering advantage compared to the other credential sys-
tems discussed in the related work section: we are trying
to solve a somewhat easier problem. As such, we can focus
on making the system faster and more efficient. While com-
plete anonymity, e.g. in the form of unlinkable transactions,
is a noble goal, it is our belief that many types of service
providers will not accept it as a practical solution. Our ap-
proach, by contrast, tries to improve on the current practice
by allowing users to minimize the amount of personal infor-
mation they entrust to service providers while recognizing
that release of some personal information is inevitable.

The disclosure of personal information carries with it the
risk that users may be tracked across multiple domains via
an external correlation of their data (for example, a mailing
address). Such a correlation attack depends only on the data
released and not how the data is released, and so we do not
consider it further.

2. BACKGROUND

2.1 Expected Scenario

We consider a scenario with three types of parties: iden-
tity providers, service providers, and users. An identity
provider is an entity in a position to make authoritative
statements about a user. An identity provider can be a third
party certificate authority, a government office, an employer,
a professional organization, etc. A service provider is an en-
tity that wants or needs to check the identity of users. A
service provider can be any organization, government office,
or individual. The user is the holder of the credential, and
is always a person in our scenario.

We acknowledge that it is notoriously difficult to deploy
a usable and secure PKI to bind keys to users, but it seems

necessary for off-line credentials. The functionality provided
by verified claims should serve as intuitive and strong moti-
vation for users to choose these methods over current prac-
tice.

Revocation is an issue for any off-line credential system.
Possible solutions include periodically distributed revocation
lists, live checking of a credential’s status, and expiration of
credentials in a timely manner. All of these are higher-level
design concerns, and do not effect the underlying credential
system as described here.

This paper only considers off-line credentials, where the
identity provider is not involved with every showing. Com-
pared with on-line credentials, off-line credentials are advan-
tagous in situations where the user and relying party are not
connected to the Internet, where the user does not want to
contact the identity provider for each transaction for privacy
reasons, or where it is not economical for identity providers
to maintain 24/7 availability.

2.2 Requirements

The design of our electronic credential was driven by sev-
eral requirements. First, the credential must not simply hold
a single identifier. Identity is a complex matter, and often
a name or serial number is not what is important in one’s
identity. Second, the user of the credential—the one whose
identity is being proven—must have as much control over
the process as possible. Considering the first requirement,
the user should be able to select which attributes of their
identity are released to a particular entity. Third, the cre-
dential must have some form of copy protection. Using the
credential should not place it at risk of being copied. Fourth,
neither the user nor the service provider should have to con-
tact the identity provider to verify the credential. Finally,
the credential must be memory and computationally efficient
to store and use.

2.3 Related Work

Digital credentials have been proposed before in various
forms. Some are pseudonym systems whereby a user can
present a different pseudonym to each service provider. The
pseudonyms are linked cryptographically such that even col-
luding service providers cannot link together two pseudonyms
belonging to a user, but the user can use a credential as-
signed to one pseudonym with another pseudonym. Some
digital credentials are claims based, whereby the credential
contains assertions about the user, but no pseudonym. Our
proposed credential is claims based.

David Chaum is credited with proposing the first digital
credential system[11]. Chaum’s system is a pseudonym sys-
tem, or more precisely the first description/definition of a
pseudonym system. Chaum’s original proposal did not de-
scribe how to implement such a system. A method for im-
plementing the system was later described by Chaum and
Evertse based on the RSA crypto-system and a semi-trusted
third party [12].

Stefan Brands developed a different form of digital creden-
tial, in which a user has a single public credential, but that
credential is pseudo-anonymous, even to the issuer [3]. The
credential holds attributes that the user can selectively prove
to a service provider. Repeated showings of the same creden-
tial are linkable, however. Since the credential is issued blind
by the identity provider, effectively a user has one global
pseudonym. The credential can be reissued easily, allowing

17

|C|aim| |Claim | |Claim | |C|aim | |Claim| |Claim | |C|aim | |C|aim |

Figure 1: Merkle hash tree with leaf nodes holding
hashes of claims.

the user to change the global pseudonym, as permitted by
the identity provider. Brands emphasizes that showing a
credential is done by zero-knowledge proof, but that has no
impact on the comparisons in this paper. Credentica’s U-
Prove Software Development Kit is based on Brands’ work
[4].

Camenisch, et al., have proposed and implemented yet an-
other form of digital credential, or more precisely, yet more
forms [6, 7, 8]. While they describe a system for implement-
ing a Chaum-like pseudonym system, their system is much
more flexible, and can be used without pseudonyms. While
having stronger anonymity properties, the algorithms are
also slower than Brands’ credentials according to [5]. IBM’s
idemix system is based on Camenisch, et. al.’s work [6].

While their aim is very different, the closest design to
our credential system is the redactable signature scheme de-
scribed by Johnson et al in their paper on homomorphic
signature schemes [16]. A comparison between our creden-
tial and their signature scheme is given in Section 3.4.

3. DESIGN

3.1 Merkle Hash Trees

The proposed credential is based on Merkle hash trees [17]
and standard public-key infrastructure (PKI) certificates. A
Merkle hash tree is essentially a binary tree where each in-
ternal node holds the hash of the concatenated values of its
two children nodes. The leaf nodes hold the data of interest.
In this way, a large number of separate data can be tied to a
single hash value. In addition, by storing the internal node
values (or a subset thereof), it is possible to verify that any
of the leaf nodes is part of the tree without revealing any of
the other data. Ralph Merkle first introduced this structure
as a way to efficiently handle a large number of Lamport
one-time signatures. It has since been adapted for uses such
as the large-scale time-stamping of documents [2] and track-
ing data in peer-to-peer networks [10]. A basic Merkle tree
is shown in Figure 1.

3.2 Credential overview

The credential consists of two parts: a public part and a
private part. The public part of the credential is a certificate.
The certificate holds information about the issuer, the certi-
fication chain for the issuer, the type of certificate, the date
range over which the certificate is valid, the user’s public

[Claim | [Claim | [Claim | [Claim | [Claim | |Claim | [Claim | [Claim |

Figure 2: Modified Merkle hash tree with subtree.

key, and the root hash of a Merkle hash tree. The certificate
should not hold any data about the user directly, even data
as common as a name. As per standard operation, the cer-
tificate will be signed by some certificate authority, which is
an identity provider in this system. The private part of the
credential consists of a private key and a Merkle hash tree
whereby all of the leaf nodes are (hashes of) micro-claims
about the identity of the user, who is the credential holder.
The Merkle tree structure allows the credential holder to
prove any subset of the claims in the tree, with only the
single signature on the certificate.

As an additional improvement, a slight modification to
the structure will allow the use of a single credential con-
taining claims from a variety of identity providers, without
requiring one identity provider to verify all of the claims.
Consider again the Merkle tree of claims, but with subtrees
coming from different identity providers. For example, one
subtree could contain claims certified by a government reg-
istry, while another subtree could contain claims certified by
an employer. In the basic structure, the identity provider
must either see all of the claims or trust the providers of all
of the subtrees that they only contain claims relevant to their
topic. Neither solution is ideal. To provide a third option,
consider adding an optional third branch to some internal
nodes of the full tree. (These nodes correspond to root nodes
of the subtrees.) The third branch contains a certificate for
all of the claims in the subtree rooted in the parent node.
When verifying a claim which is in such a subtree, the form
is different—three hashes are concatenated in a node instead
of two—so the verifier knows that this claim is under a differ-
ent certificate than the credential as a whole. For example,
in Figure 2 the left hand subtree contains claims certified by
the overall identity provider. The overall identity provider is
referred to as the certificate authority (CA). The right hand
subtree contains claims certified by some other party, which
do not have to be verified by the top level CA. From here
on, the term ”subtree” is used to refer to a branch contain-
ing nodes from a different identity provider, rooted in one
of these sub-roots.

We would like to identify a node as being a leaf node with-
out seeing the associated claim. This is required for the se-
curity proof in the appendix. This discrimination is achieved
by simply appending a bit to the end of the hash, either a
one if the node is an inner node, or a zero if the node is a leaf
node. For efficiency, our implementation simply overwrites
the least significant bit of the hash value, instead of append-

18

ing another bit. This is equivalent to truncating the output
of the hash function used by a single bit (with a insignificant
decrease in security), and then appending the indicator bit.
In order to keep the system secure while still only needing
to check the signature on a single certificate, nested subtrees
are forbidden. If a service provider encounters a claim in a
nested subtree, it should reject the credential.

A tree might have no claims outside of subtrees. In this
case, the top level CA is signing that it has verified that the
form of tree is correct, that all certificates for subtrees are
valid, and that the user possess the private key(s) matching
the subtree certificates and the top level certificate. The CA
could be fully automated in this situation, allowing users to
easily update their credentials when subtrees are added or
modified. Note also that changes to attributes in one sub-
tree only require recomputation of that subtree, the main
root hash, and the top-level signature. Recomputation of
other sub-trees and other signatures is not required.

3.3 Protocols for the Credential

Creating a credential is both conceptually and computa-
tionally easy. In the case where there is a single identity
provider for the credential, there are roughly four steps re-
quired: first, agree on a list of claims. Next, generate the
hash tree for the claims. Third, verify that the user pos-
sesses the private key. Finally, produce and sign the public
certificate.

First, the user and identity provider agree on a list of
claims. The logistics involved in an identity provider verify-
ing the user claims are beyond the scope of this paper. Sec-
ond, either the user or the identity provider generates the
hash tree for the claims. Random padding must be added to
the claims before they are hashed, as discussed shortly. With
a single identity provider, the tree will always be balanced,
bounding the number of interior nodes to the number of
claims. The number of hashes needed to generate the tree is
therefore bounded to twice the number of claims—generally
an insignificant amount of computation time. Third, the
identity provider must verify that the user holds the private
key matching the public key of the credential. The user can
reuse an already generated key pair or generate a new key
pair for the credential. The identity provider does not need
to ever know the private key. Finally, the identity provider
creates and signs the public certificate for the credential.

Random padding must be added to the claims before they
are hashed in order to prevent dictionary attacks against
parts of the tree. The random padding can be generated and
stored in a number of different ways. For example, Johnson,
et al. [16], describe a method credited to Goldreich, Gold-
wasser, and Micali [14] that uses a pseudo-random function
whose output is twice the length of its input. A single seed
value at the root node is expanded as per the tree branch-
ing structure using the pseudo-random function. Each node
therefore has a pseudo-random value associated with it that
can be used to generate the pseudo-random values for all of
its children nodes. A computationally easier method is to
use a seed value and the claim index with a pseudo-random
function to generate the padding for each claim. Neither of
these methods will work well for our system, unfortunately,
due to the inclusion of different subtrees within a larger tree.
In the most general case, simply storing the random padding
for each claim is probably the easiest solution. The overhead
is small, just 10-16 bytes per claim. Alternative approaches

are possible, but all require the user to have a global se-
cret, keep the private keys for all certificates, or store extra
private information with each credential.

Creating a credential with claims from multiple identity
providers is done by integrating credentials as subtrees. One
identity provider will be the final one, referred to as the cer-
tificate authority (CA). The user creates credentials with all
of the identity providers, except for the final one, by the pro-
cedure described above. Then, the user creates a credential
with the CA. For this final credential, the hash trees from
the other credentials are incorporated into the final hash
tree. The root nodes for the incorporated subtrees will have
a third branch added, each containing the certificate from
the original identity provider of that subtree, as shown in
Figure 2. (The root hash values in the subtree certificates
will no longer match, but that doesn’t matter.) All subtrees
in the credentials being added must be removed from their
trees and added separately to the top level tree. This pre-
vents nested subtrees. The CA verifies the structure of the
tree, including the top two leaf nodes of each subtree (as
they are needed to calculate the sub-root’s hash), as well
as the public part of the sub-credentials, and the associated
public/private key pairs. In general, the public/private key
pairs may be the same as or different from each other and
the top level key pair. All that matters is that the user
holds the corresponding private keys at the time that the
credential is assembled. In a more restricted setting, the
public/private key pair may be required to be the same for
all subtrees. The CA does not need to see the claims from
subtrees.

To provide an example of combining credentials, imag-
ine a user, Alice, who already has a credential containing
claims from three different identity providers. Alice is then
issued a credential from her employer. The two credentials
are shown in Figure 3. Alice’s employee credential already
has a number of subtrees, containing separate credentials
from the engineering department, human resources depart-
ment, and her own lab. The credential also has a top level
claim of her employee ID. Alice goes to a certificate author-
ity to create a new credential from these two credentials.
She submits no claims to be verified by the CA and seven
sub-credentials to be included in the final credential—three
of these are from her previous credential, three were embed-
ded in her employee credential, and the last is the credential
claiming her employee ID. The CA will verify the seven cer-
tificates, verify that Alice possesses the appropriate private
key(s), generate a new tree, and provide Alice with the new
certificate.

The protocol for using the credential follows conventional
PKI certificate usage. The user connects to a service provider,
either over a wide or local area network, and requests some
service, sending the public part of the credential. The ser-
vice provider requests the appropriate identity attributes
from the user. The user provides the claims that match
the requested attributes and the intermediate node values
and path information necessary for the service provider to
verify each of the claims. If any of the claims are in a subtree
certified by a different identity provider, the accompanying
certificates must be included with the set of claims. The
service provider verifies that the claims are in the hash tree
specified (via the root hash) in the certificate part of the cre-
dential. The service provider also verifies the signature on
the certificate part of the credential. In order to verify that

19

the user is the holder of the credential, the service provider
also verifies that the user possesses the private key which
matches the public key claimed by the credential. This can
be done by standard methods, such as challenge/response or
as part of a secret key agreement operation, as long as the
key verification is tied to the specific claims being asserted
by the user. This can be done, for example, by hashing all of
the claims asserted by the user as part of the challenge field.
In addition to the cryptographic verifications, the service
provider must of course confirm that it trusts the identity
providers to assert the claims in the credential. For exam-
ple, a claim of an individual’s address asserted by the Bar
Association would be out of place. Similarly, an assertion
by the Department of Motor Vehicles that an individual was
a licensed lawyer should not be trusted.

The procedures for creating and using credentials given
herein are purposely generic. We prefer to constrain the
structure and properties of the credential and leave some
flexibility in the procedures for generating and verifying it.
As a prototype, we have developed specific implementations
of these procedures, and performance results based on these
implementations are reported in Section 5.

3.4 Comparison to Related Systems

Johnson, et al., define and construct redactable signatures
using a Merkle hash tree to allow the signature verification of
a message even when parts of the message have been deleted
[16]. In their example, a body of text is signed such that it
can be redacted at some level of granularity (sentence, word,
or character making the most sense). They do not appear
to have considered using the construct in the context of a
credential. While both systems share a core idea—using a
Merkle hash tree to hide signed elements—the two systems
have significant differences. Both systems use slightly differ-
ent hash functions (constructs) for the leaf and inner nodes.
In their signature scheme, the input to the hash function is
specified to match a certain form, which is important to their
proof of security. In our credential system, the output of the
hash function is specified to match a certain form, which is
sufficient to meet the requirements of the security proof,
while providing the property of being able to identity a leaf
node from its hash value alone. Subtrees of the type used
in the credential system are not used at all in the signature
scheme. To the best of our knowledge, the idea of combining
trees by modifying the tree structure as we do is novel, and
introduces extra complications. The three-child inner nodes
(shown in Figure 2) and modified hashing scheme (discussed
in Section 3.2) both result from the idea of combining sub-
trees from different identity providers. Combining subtrees
allows claims from many different sources to be in a single
credential, under a single certificate.

Brands mentions in his book the idea of using hash trees
to store claims, but dismisses it because it does not provide
the properties he desires [3].

3.5 Copy Resistance

The credential is strongly copy resistant under normal op-
erations, due to the incorporated public/private key pair.
Whenever the credential is used, the private key is used to
prove that the user is the authorized credential holder. Since
the private key never leaves the user’s machine, it can’t be
copied by the service provider or any third party listening
to the exchange. (The private key can of course be copied if

Previous Credential

[Employee ID

Employer Issued Credential

Combined Credential

Figure 3: Combining a generic credential with an employee credential.

the user’s machine is compromised, but that is beyond the
scope of this paper.)

This copy resistance property extends to preventing stan-
dard man-in-the-middle attacks. For example, consider how
a phishing site handles conventional one-time passwords or
other two-factor authentication methods. A user logs in to
what they believe is the legitimate site of their bank, broker,
or other service provider, but which is really a phishing site.
The user enters their user-name and password and then, ei-
ther in the same step or in a second step, enters a one-time
password from a sheet of paper or electronic device. The
phishing site simply passes all the information from the user
on to the site being spoofed, and returns the responses from
the legitimate site to the user. After the user has success-
fully logged into the legitimate site, through the phishing
site, then the phishing site is logged in as the user and can
perform whatever actions it wants.

The standard protection against this type of man-in-the-

middle attack is the use of server-side certificates with SSL/TLS.

When the user initiates a secure connection to a service
provider, the service provider replies with a PKI certifi-
cate. The user’s client (web browser) usually handles check-
ing the validity of the certificate automatically, interrupting
the user only when a problem is detected and simply show-
ing a non-intrusive indicator when the secure connection is
setup without problems. Phishing sites have used a variety
of techniques to get around server-side certificates, including
simply not using SSL/TLS, making the browser look like it
is using SSL/TLS when it is not, and obtaining valid certifi-
cates for different domains, which can be mistaken for the
legitimate domain by an unwary user. All of these tricks are
possible because of the disconnect between the authentica-
tion system (SSL/TLS), and the thing being authenticated
(the service provider). The certificates authenticate the do-
mains used, instead of the actual service providers.

In contrast to the server-side certificates, our credentialing
scheme intimately ties the authentication system (the pri-
vate/public key pair and the certificate as a whole) to what
is being authenticated (the credential as a whole). Consider
again the phishing site, but with the credential in place of
the user-name, password, and one-time password. When the
user connects to the phishing site, the phishing site can relay
requests to the legitimate service provider and replies back
to the user as before. However, when the service provider
sets up a secure connection, it will use the user’s certificate
to setup the session. The phishing site can substitute its
own certificate, but then it is no longer impersonating the
user. Alternatively, the phishing site can pass on the user’s
certificate, but then the phishing site loses control of the

20

session. The service provider can setup an authenticated
tunnel to the user, so that the phishing site can no longer
modify the traffic without being detected.

4. SECURITY

In this section we discuss some potential attacks against
implementations. We provide a formal analysis of the secu-
rity properties of the underlying cryptographic construction
in the appendix.

4.1 General Security Discussion

The basic attacks that the credential must resist are forgery,
theft, privacy compromise, man-in-the-middle, and collu-
sion.

Forgery - a malicious user should not be able to forge a
valid credential containing invalid claims.

Theft - the credential should be resistant to theft.

Privacy compromise - an attacker should not be able
to learn more about the user of a credential than the user
chooses to reveal.

Man-in-the-middle - a hostile service provider should
not be able to misuse or reuse a user’s credential that is
presented to it.

Collusion - two or more users working together should
not be able to make a claim that no single user in the group
can make alone.

During the design process, several specific attacks against
earlier versions of our system were discovered. They in-
clude dictionary attacks against neighbor nodes, combined
replay /man-in-the-middle, hidden subtrees, and the broken
hash attack.

Dictionary attacks against neighbor nodes come from the
fact that when a credential is used, the hash values of un-
released claims must be provided. Assuming a secure hash
function is used, an attacker cannot determine the value
of the unreleased claim via cryptanalytic attack. However,
since most claims are likely to be in a standard form, a dictio-
nary attack should often be successful. We protect against
this type of attack by padding the claims with random or
pseudo-random data.

A combined replay/man-in-the-middle attack may be pos-
sible when the verification that a user holds the private key
for a credential is completely unrelated to the showing of
the tree for the credential. In this situation, an attacker
can perform a replay attack against the showing of the tree,
and then a man-in-the-middle attack against the user prov-
ing possession of the private key. While this attack either
does not apply or would be meaningless to many uses of the
credential, it is still a possible attack. We protect against

this type of attack by requiring that the verification of the
private key be linked to the specific claims being shown.

To maximize the efficiency of showing a credential, we
would like to minimize the number of slow, public-key oper-
ations performed. The best that we can do is to have only
a single certificate verification and a single public/private
key verification, regardless of the number of claims and how
many different subtrees the claims may be in. During the
issuance of a credential an identity provider will check the
certificates for all subtrees within the tree. Therefore, when
the credential is shown, the service provider does not need
to recheck those certificates, as long as it trusts the top
level CA. However, consider the case of a nested subtree.
An identity provider shouldn’t be able to see the claims
in subtrees, due to privacy requirements. But this means
that a subtree can hide another subtree. In particular, a
subtree issued by a bad (but untrusted) identity provider
could hide a subtree apparently issued by a trusted identity
provider, but in actuality was forged and has a bad signa-
ture. This could be prevented by several different protocol
changes. The most efficient of these is by preventing the
inclusion of a hidden subtree in the first place. Our current
recommendation is simply to ban nested subtrees altogether,
and have the service providers ensure that credentials which
have nested subtrees are rejected.

Another structural attack that was encountered is imple-
mentation specific. In our prototype implementation, plain
X.509 certificates are used. X.509 certificates are designed
to match a directory entry for a particular subject, and their
structure is fairly rigid around that purpose. Therefore, our
implementation didn’t specify any extra details about the
hash tree—such as the hash algorithm used—in the certifi-
cate itself, but instead stored that information with the tree.
This can lead to an attack if a hash algorithm trusted for use
in creating the tree is broken. Given the right conditions, an
attack could create a tree using the broken algorithm, which
could then collide against the root hash stored in a valid
certificate, even if the valid certificate was for a tree using
a different (and hopefully more secure) hash algorithm. We
consider this attack to be fairly minor, because it requires a
primitive of the system to be broken badly—in order to find
a collision from one hash function to another should effec-
tively require a preimage attack, and not a simple collision.
As version 3 of X.509 certificates allows arbitrary extensions,
the hash algorithm can be specified in the certificate, any-
way.

S. PERFORMANCE

Our minimal disclosure credential design focuses on con-
ventional operations (one-way hashes) and minimizes the
number of asymmetric/public key operations. This allows
our system to be much faster than the digital credential
schemes by Brands and Camenisch, et al., which require
many more of these expensive public key operations. In
this section, we report on two sets of performance experi-
ments that validate this claim. In the first set, we evaluated
the computation time to verify credentials of different types
with a varying number of claims. This set focuses solely on
the computational burdens placed on servers, which is likely
to be the most significant performance bottleneck in a sys-
tem. In the second set of experiments, we implemented and
deployed an actual client-server system in Emulab [19], and
evaluated the server throughput. This set of experiments in-

21

Operation Time (u-sec)
Verify Tree (SHA-256)
1 claim of 2048 31
20 claims of 2048 100
All 2048 claims 8030
Verify Certificate
RSA, 1536 bit 620
Verify Brands
1 claim 38,000
20 claims 283,000
2048 claims 26,000,000

Table 1: Time efficiency of hash tree and certificate

cluded communication costs and additional client-side and
server-side computations costs in addition to credential ver-
ification time, and it has multiple clients accessing the ser-
vice simultaneouly, to provide a realistic overall assessment
of performance. In both sets of experiments, we compared
our hash tree approach against Brands’ credentials and the
brute force solution of embedding each claim in a separate
certificate. For Brands’ credentials, we used the parameters
from [5, Section 2.2] (|p| = 1600, |¢| = 256, |s| = 160).

The first set of experiments (credential verification time
only) was performed on an Intel Core 2 Duo E6600 running
at 2.4 GHz using Sun’s server JVM version 1.6.0. In all
cases the operations were run repeatedly before timing, so
as to force the JVM to fully optimize the operations. Our
prototype uses X.509 certificates (with the root hash as the
distinguished name) for the public key certificate part of the
credential. The certificate is signed using RSA, and the CA’s
key is 1536 bits. Results are shown in Table 1. The total
time to verify one of our hash tree credentials is equal to the
tree verification time plus the time to verify one certificate.
Trees containing claims from multiple authorities would re-
quire verifying the hash tree and one certificate for each au-
thority that has at least one claim being asserted. The hash
tree used in these experiments contains 2048 claims. From
Table 1, we see that verifying one claim with the hash tree
approach is approximately 58 times faster than verifying one
claim in a Brands’ credential. For 20 claims, the hash tree
approach is approximately 390 times faster than Brands’,
and with 2048 claims, the speedup factor is approximately
3,000. Speedup compared to the brute force approach of one
certificate per claim is also substantial. This speedup is lin-
ear with the number of claims, i.e. approximately 20 times
faster with 20 claims, 100 times faster with 100 claims, etc.

Our second set of experiments was done using an actual
client-server implementation deployed in Emulab [19]. In
these experiments, there were a variable number of clients
and one server, which accepted connections from the clients
and verified one credential per client request. Each client
and server instance was run on a separate 3 GHz Pentium
Xeon. Each client generated verification requests one af-
ter another, waiting for one response and then immediately
generating a new request. We again waited until the server
had processed a number of requests before timing the op-
erations to ensure full JVM optimization. All parameters
were the same as in the first set of experiments. Here,
our primary performance measure is the server throughput
(number of verifications done per second). The results of
these experiments are shown in Figure 4. The figure shows

250

= = = MHT Cred (1 claim) —+—MHT Cred (15 claims)
—— MHT Cred (500 claims) MHT Cred (2048 claims)
@ Brands (10 claims) —o— Certificates (2 claims)

4 MHT Cred (100 claims}
@— Brands (20 Claims)
—o— Certificates (15 claims)

200

H
@
S

Transactions/second
=
S
3

50

Number of simultaneous clients

Figure 4: Credential Verification Throughput vs.
Number of Clients

\M

User

Service Provider

Remote Identity Agent

Figure 5: Remote identity agent system.

that throughput with Brands’ credentials saturates at only a
few clients, while the hash tree credentials can handle up to
about 15 clients before saturating. The peak throughput for
the hash tree credentials is approximately 210 verifications
per second, while the peak throughput with Brands’ cre-
dential having 10 claims is approximately 5 operations per
second and with 20 claims it is only about 2 operations per
second. Adding claims to the hash tree credential has only
a modest impact on performance. With 15 claims, the peak
throughput is still over 200 verifications per second and even
with 2,048 claims, the throughput is still around 33 verifica-
tions per second. The figure also shows that throughput for
the brute force approach with one certificate per claim drops
off rapidly as the number of claims increases. Overall, the
Emulab results support the earlier experiments in that the
hash tree credentials retain a strong performance advantage
relative to Brands’ (approximately 40-100 times faster for
moderate numbers of claims).

6. USE OF CREDENTIALS IN A DEMON-
STRATION SYSTEM

The prototype credential system is already being used by a
second prototype system—one working with a remote iden-
tity agent. Figure 5 shows the current remote agent proto-
type design in use. The user is issued one or more credentials
by an identity provider. The hash tree and claims of the cre-

22

dentials are stored on a remote, networked attached identity
agent. The public key or keys are stored on the user’s local
device. The user proves ownership of the credential using
the private key, while the bulk of the credential is sent from
the remote agent to the service provider, after having re-
ceived appropriate authorization from the user. As we are
allowing for a resource-constrained user device, such as a cell
phone, we try to limit the number of network connections
by sending the authorization for the remote agent through
the service provider. The authorization is encrypted and
signed to prevent tampering and protect the user’s privacy,
of course. The service provider validates the credential as
usual.

The system is implemented in Java. The user’s local de-
vice is a local agent program spawned from a webbrowser,
while the service provider is a modified webserver. A video
demonstrating its use is available on our website.[1]

7. CONCLUSION

Privacy is important both as a protective principle and as
a security measure. Identity theft is a serious and widespread
crime. The Federal Trade Commission reports that over
a quarter of a million identity theft complaints were re-
ceived in 2005, in addition to over 430,000 other fraud com-
plaints. Internet-related complaints accounted for almost
half of those [13]. Protecting personal information is vi-
tal to reducing identity theft. Limiting information disclo-
sure does not require that accesses to service providers be
completely anonymized. A user may repeatedly present the
same credential or service provider specific claims to a ser-
vice provider. This could facilitate many useful applications
such as user-controlled services for monitoring usage of their
credentials. In addition, for security sensitive applications
and with appropriate safeguards in place, accumulated user
information could be sent to the identity providers to enable
auditing of credential use.

8. ACKNOWLEDGEMENTS

The authors wish to thank Alexandra Boldyreva for help-
ful discussions, and Ralph Merkle for inspiration. This re-
search was supported in part by the National Science Foun-
dation (under Grants CCR-0208655 and CNS-CT-0716252),
Nortel Networks, the state of Georgia, and the Institute
for Information Infrastructure Protection. This material is
based in part upon work supported by the U.S. Department
of Homeland Security under Grant Award Number 2006-CS-
001-000001, under the auspices of the Institute for Informa-
tion Infrastructure Protection (I3P) research program. The
I3P is managed by Dartmouth College. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of any of
the sponsors.

9. REFERENCES

[1] D. Bauer. Video demon-
stration of the credential-holding remote identity agent.
http://users.ece.gatech.edu/"gte810u/RIdA_Video/,
2007.

[2] D. Bayer, S. Haber, and W. Stornetta. Improving the
efficiency and reliability of digital time-stamping. In
Sequences II: Methods in Communication, Security,

[11]

[12]

and Computer Science, pages 329-334.
Springer-Verlag, 1993.

S. Brands. Rethinking Public Key Infrastructures and
Digital Certificates; Building in Privacy. MIT Press,
2000.

S. Brands. Credentica - u-prove sdk, 2007.

S. Brands, L. Demuynck, and B. D. Decker. A
practical system for globally revoking the unlinkable
pseudonyms of unknown users. In (Accepted to) 12th
Australasian Conference on Information Security and
Privacy, 2007.

J. Camenisch and E. V. Herreweghen. Design and
implementation of the idemix anonymous credential
system. In Proceedings of the 9th ACM conference on
Computer and communications security. ACM
PRESS, 2002.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Compact e-cash. In R. Cramer, editor, Advances in
Cryptology — EUROCRYPT 05, volume 3494 of
Lecture Notes in Computer Science, pages 302—321,
2005.

J. Camenisch and A. Lysyanskaya. An efficient system
for non-transferable anonymous credentials with
optional anonymity revocation. In Proceedings of the
International Conference on the Theory and
Application of Cryptographic Techniques: Advances in
Cryptology. Springer-Verlag, 2001.

K. Cameron. The laws of identity, 2005.

J. Cates. Robust and efficient data management for a
distributed hash table. Master’s thesis, Massachusetts
Institute of Technology, May 2003.

D. Chaum. Security without identification:
transaction systems to make big brother obsolete.
Communications of the ACM, 28, Oct 1985.

D. Chaum and J.-H. Evertse. A secure and
privacy-protecting protocol for transmitting personal
information between organizations. In Advances in
Cryptology, pages 118-167. Springer-Verlag, 1987.
Consumer fraud and identity theft complaint data,
2006.

O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. J. ACM, 33:792-807,
1986.

D. Hardt. Identity 2.0, 2005.

R. Johnson, D. Molnar, D. X. Song, and D. Wagner.
Homomorphic signature schemes. In Topics in
Cryptology — CTRSA 2002, volume 2271, pages
244-262. Springer-Verlag, 2002.

R. Merkle. A certified digital signature. In Advances in
Cryptography, pages 218-238. Springer-Verlag, 1989.
Microsoft. Microsoft’s vision for an identity
metasystem, 2005.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255-270, Boston, MA, Dec.
2002. USENIX Association.

23

APPENDIX
A. FORMAL ANALYSIS OF SECURITY

We provide a rigorous analysis of our credential system.
We first formally define the new notions of unforgeability and
privacy for a credential system and show that our system
achieves these under standard cryptographic assumptions.

Unforgeability states that a user cannot convince a service
provider that a set of claims is true unless those claims were
actually approved by an identity provider. We formalize
this in a strong way: we allow adversaries to adaptively
obtain an unbounded polynomial number of credentials on
sets of claims, and then require that the adversary can not
generate a credential on a set that was not contained in one
of the valid credentials. Furthermore, the adversary may
request that credential trees be combined. The adversary is
also considered to have won if it can fool a service provider
into accepting a valid claim from one identity provider as a
claim from another identity provider which did not approve
the claim. For simplicity, we analyze the cases where the
claim tree contains no subtrees or is composed entirely of
subtrees. The analysis can easily be extended to the case
where claims are mixed with subtrees.

Privacy states that no partial information about unre-
vealed claims is leaked. We will allow adversaries to adap-
tively obtain credentials and then submit two sets of "chal-
lenge” claims of equal size. One of the challenge claim sets
is selected at random and then a credential is generated on
that set and returned to the adversary. The adversary can
ask that parts of the challenge credential be revealed be-
fore outputting a guess. Of course, we must restrict the
adversary to revealing only claims on which the sets match
(otherwise distinguishing is trivial).

We leverage two properties in our analysis that were not
considered in the redactable signature scheme of Johnson, et
al., which used a similar technique of constructing a Merkle
tree and then signing the root [16].

First, we consider the privacy of unrevealed claims, a no-
tion that did not apply to the context of redactable sig-
natures. If we translate Johnson, et al.’s terminology to
our context, it was assumed that the adversary knew all of
the claims in a given tree, and after the user revealed some
claims, the adversary would attempt to convince an iden-
tity provider that some of the remaining unrevealed claims
were in the tree. The security theorem given by Johnson,
et al., stated that the adversary could not succeed, despite
knowing all of the claims. For unforgeability, we need only
a weaker version of this security that prevents an adversary
from inserting new claims, and for privacy we must defend
against adversaries who do not know all of the user’s claims
and wish to learn something about the unrevealed claims.
Second, combining trees did not apply in their context and
was not considered. For this work, combining trees allows
us to save the computation involved in verifying many sig-
natures if the key used to sign the root node is trusted.

In the following definitions, we treat a credential system
as a pair of algorithms (KeyGen, SignCred). KeyGen takes
as input a security parameter and outputs a unique ID for
the identity provider and a public/secret key pair to be used
in generating and verifying credentials. SignCred takes as
input an identity provider’s secret key and a set of claims,
and outputs a credential on the set of claims. Each claim is
either an arbitrary string s or a tuple (id, s, o), where id is

an identity provider’s unique ID, s is an arbitrary string, and
o is a signature. The second type of claim corresponds to a
request to combine a subtree with root s from the identity
provider with unique ID id, and ¢ is the signature on s.

For the following definition we define to two oracles, Cre-
ateIDP and RetrieveCred. CreateIDP runs KeyGen and re-
turns the id and public key, and RetrieveCred takes as input
a claim set and an identity provider’s unique ID and runs
SignCred with the corresponding secret key, and then re-
turns the credential.

Definition 1. (Unforgeability) Let (KeyGen, SignCred) be
a credential system. Then a probabilistic, poly-time adver-
sary ACreatelDP RetrieveCred iq ¢qid 10 forge a credential if it
outputs a tuple (pk*,o.,{c;},{ni}), where pk* is a public
key output by GenIDP, ¢* is a valid signature under pk*,
{ci} is a set of claims not signed by their respective identity
providers, and {nj} is a valid set of intermediate nodes for
revealing the claims in a hash tree corresponding to o*.

Definition 2. (Privacy) Let (KeyGen, SignCred) be a cre-
dential system, let Chal be an oracle that when given two
claim sets and a identity provider’s ID, chooses one of the
sets at random and generates a credential on that set, and
let Reveal be an oracle that takes as input a claim set and re-
veals those claims (Reveal may only be called after Chal has
been called). Then an adversary
is said to violate the privacy of the credential system if it
guesses the set chosen by Chal with probability non-negligibly
greater than 1/2.

THEOREM 1. If is a collision resistant hash function and
the underlying signature scheme is existentially unforgeable,
then the scheme described above is unforgeable except with
negligible probability.

PROOF. Above we assumed that a tree is valid only if all
of its claims are contained in subtrees or if none of its claims
are in subtrees. We will deal with these two cases separately.

Case 1: A outputs no subtree claims. Here o* must be a
signature output by the underlying signature scheme under
a key output by CreatelDP, because otherwise A could be
used to break the underlying signature scheme. Moreover,
the nodes revealed by A must be a subtree of the tree from
that query. Otherwise A has found a collision in the hash
function: either a tree node’s input was changed, or if an
internal node was used as a leaf, then the appended bit is
different, forcing a collision.

ACreateIDP,KeyGen,Chal,Reveal

24

Case 2: A outputs a tree containing subtrees. Here again
the signature at the root provided by A must have been
output by SignCred. A must reveal the intermediate nodes
leading up to the root, and since every claim is contained in
a subtree, A must reveal a preimage of the trinary node (the
root of the subtree). By the collision resistance of H, A must
reveal the same public key as part of the preimage of the
trinary node. By the same reasoning, the revealed tree must
be contained in the honestly generated tree, so the claims
must have been signed before and the matching trinary node
preimage guarantees that the claim is under the original
identity provider. This completes the proof sketch. [

We note that the random padding is not needed for un-
forgeability, but it is necessary for privacy, as discussed be-
low.

Next we argue that the scheme does not leak informa-
tion about unrevealed claims. Below we will need that the
hash function is a pseudorandom function when the random
padding is viewed as a key.

THEOREM 2. If Hi(z) = H(k,x) is a pseudorandom func-
tion (keyed with the padding k), then the scheme described
above is private.

ProOF. Consider an adversary A attempting to violate
the privacy of the credential system, as defined above. A
will obtain credentials on sets until it outputs two challenge
sets, which define a symmetric difference of claims which it
cannot ask to be revealed.

We define a sequence of ”hybrid” versions of the game
played by A, where in each hybrid we hash one more claim
in the symmetric difference with an independent random
function instead of with Hj. Since Hy is a pseudorandom
function that is only queried once for each randomly chosen
k, A cannot detect the difference between adjacent hybrids.
Then A cannot detect the difference between the extreme
hybrids, where either all claims in the symmetric difference
are hashed with Hj or all are independent random values.
But in the latter case, the distribution seen by A is the same
no matter which of the two challenge claim sets is chosen,
meaning that A has advantage 0 in that hybrid. Thus A
has negligible advantage in distinguishing the two claim sets,
completing the proof sketch. []

