
AuthGuide: Analyzing Security, Privacy and
Usability Trade-offs in Multi-Factor

Authentication

Davy Preuveneers, Sander Joos, and Wouter Joosen

imec-DistriNet, KU Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{davy.preuveneers,sander.joos,wouter.joosen}@kuleuven.be
https://distrinet.cs.kuleuven.be

Abstract. Multi-factor authentication (MFA) reduces the risk of com-
promised credentials. However, selecting, configuring and combining dif-
ferent authentication factors is a challenge for both security administra-
tors and end-users, as the configuration possibilities are large and the
implications of choices on security, privacy and usability are not always
well understood. This concern is further aggravated when the security
administrator grants the end-user some flexibility for the selection of au-
thentication factors, or when the latter are combined in a risk-adaptive
manner. In this work, we present AuthGuide, an authentication knowl-
edge and configuration framework that increases the awareness about
these trade-offs. Additionally, it raises the level of abstraction to config-
ure MFA for a given identity and access management (IAM) platform
through a series of questions by mapping the responses onto the IAM’s
workflow of authentication steps for registration and login. We imple-
mented AuthGuide, validated it on top of the open source Keycloak
IAM, and evaluated the effectiveness of our framework to analyze the
security, privacy and usability trade-offs.

Keywords: Authentication · Security · Privacy · Usability.

1 Introduction

Two-factor authentication (2FA) and multi-factor authentication (MFA) [3,10]
are effective measures to reduce the impact of breaches caused by stolen creden-
tials and credential stuffing attacks. Yet, configuring an effective multi-factor
or multi-modal authentication strategy remains a daunting task due to the non-
trivial trade-offs between security, privacy and usability. For example, risk-based
MFA solutions that use contextual factors−such as current and previous IP ad-
dresses, locations of the end-user, or browser fingerprints [1,8,4]−can help the
relying party (RP) to quantify the risk and trigger additional step-up authentica-
tion actions. However, the same context factors are exploited for online tracking,
and hence harm the privacy of the user [13]. Also, they may be rendered inef-
fective when web browsers implement countermeasures against such tracking.

https://distrinet.cs.kuleuven.be

2 D. Preuveneers et al.

Protocols and standards like FIDO2, WebAuthn and CTAP let web browsers
authenticate users with public key cryptography, where the private key on the
client is protected by a hardware security key or a mobile device implementing
biometric authentication (e.g. fingerprint verification). Passwordless authentica-
tion sounds convenient, though the uptake of biometric authentication is slow.
Previous research [11] on passwordless authentication has demonstrated that us-
ability concerns remain. Furthermore, from a security point of view, the RP of-
fering WebAuthn authentication, must trust the client−e.g. the biometric factor
implementation on a mobile phone−used to unlock the private key. For example,
the RP may not know the false positive rate (i.e. a security concern) and false
negative rate (i.e. a usability concern) of each biometric factor on every mobile
device. Furthermore, in 2019 the ‘Face Unlock’ feature of Google’s Pixel 4 was
confirmed to work even when asleep1, and the use of gel-based screen protectors
was also reported2 to fool fingerprint authentication. Last but not least, end-
users may understand the privacy benefits of their biometric templates never
leaving their mobile device, but not necessarily the extent to which biometric
factors can be subject to the above security threats.

When enabling multi-factor authentication in identity and access manage-
ment (IAM) platforms, the number of configuration options offered to the se-
curity administrator is typically large, and the implications of the choices on
security, privacy and usability are not always clear, also for end-users, hereby
jeopardizing the onboarding of MFA. To address these challenges, we present
AuthGuide, an authentication knowledge framework that:

1. Embeds a body of knowledge to inform about the trade-offs of MFA
2. Analyzes the risk of the customization flexibility granted to the end-user
3. Raises the level of abstraction to simplify the configuration of MFA

AuthGuide achieves this through a series of configuration questions with back-
ground and threat information on security, privacy and usability. It validates the
responses against requirements from NIST SP 800-63B [5], and maps them onto
an IAM’s workflow of mandatory, optional and alternative authentication steps.
This workflow entails both the registration phase (e.g. the enrollment of security
keys or OTP authentication factors) and the login phase. We implemented and
validated our solution on top of Red Hat Keycloak, a state-of-practice and open
source IAM platform. We evaluated the effectiveness of AuthGuide to configure
MFA, and its ability to analyze the security, privacy and usability trade-offs.

The remainder of this paper is structured as follows. Section 2 reviews rel-
evant related work on multi-factor authentication strategies. The design and
implementation of our solution is explained in section 3. The experimental eval-
uation and validation of AuthGuide are discussed in section 4. We conclude
with a summary of the main contributions of this work and a roadmap for further
research in section 5.
1 Google Pixel 4 Face Unlock works if eyes are shut (2019), https://www.bbc.com/
news/technology-50085630

2 Samsung: Anyone’s thumbprint can unlock Galaxy S10 phone (2019), https://www.
bbc.co.uk/news/technology-50080586

https://www.bbc.com/news/technology-50085630
https://www.bbc.com/news/technology-50085630
https://www.bbc.co.uk/news/technology-50080586
https://www.bbc.co.uk/news/technology-50080586

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 3

2 Related work

In this section, we review relevant related work on multi-factor authentication,
including adaptive and continuous authentication, to illustrate the complexity of
understanding the security, privacy and usability trade-offs from the perspective
of the different stakeholders, i.e. security administrators and end-users.

Dasgupta et al. [2] discussed adaptive multi-factor authentication strategies
as a combination of the calculation of the trustworthiness of different authen-
tication factors, and an adaptive strategy for selecting authentication factors
based on their calculated trustworthiness, performance, surroundings and more.
It combines a variety of biometric and non-biometric authentication factors,
and also avoids repeated selections of the same set of factors in successive re-
authentications to reduce the chance of establishing recognizable patterns. The
solution was compared with the FIDO and Microsoft Azure MFA frameworks in
a user study, and the proposed solution was found to be better. While the usabil-
ity of the solution was evaluated, the perceived impact on the user’s privacy was
not assessed. Wang et al. [14] analyzed 5 MFA solutions based on smart cards,
passwords and biometrics, and they specifically investigated security failures of
their deployment in multi-server environments under the assumption of various
threat models (or adversary models). They found critical security and privacy
issues in each of them, including vulnerabilities against stolen-verifier attacks,
insider attacks, failing to provide forward secrecy, and the loss of user anonymity.

Many security and authentication guidelines−such as websites of govern-
mental agencies3−strongly encourage the use of 2FA and MFA, though often
only from an end-user perspective to recommend how to better protect online
accounts. Other reports, such the NIST Special Publication 800-63B [5] on ‘Digi-
tal Identity Guidelines: Authentication and Lifecycle Management’ offer detailed
technical requirements at different authenticator assurance levels, and with con-
sideration of usability and privacy. While those reports are typically targeted
towards security administrators, the latter have to consider not only the secu-
rity, privacy and usability trade-offs of their MFA implementation, but also the
degrees of freedom they are willing to offer to end-users to further customize the
MFA experience to their personal preferences. Those trade-offs and their impact
on the actual implementation and deployment are less straightforward.

Klieme et al. [7] presented FIDOnuous that builds upon the WebAuthn
standard to support continuous authentication. While WebAuthn enables user-
friendly passwordless authentication, as well as strong authentication methods
with biometrics, it fails to detect an attack after a successful login. The authors
propose a WebAuthn extension that uses an Android-based authenticator com-
municating over Bluetooth Low Energy (BLE), such that the relying party and
the authenticator can continuously exchange authentication verifications. While
the authors did not evaluate any specific continuous or behavioral authentication
method, their simulation demonstrates the practical feasibility of the integration

3 Safeonweb, Use two-factor authentication (2020), https://www.safeonweb.be/en/
use-two-factor-authentication

https://www.safeonweb.be/en/use-two-factor-authentication
https://www.safeonweb.be/en/use-two-factor-authentication

4 D. Preuveneers et al.

with WebAuthn. From a privacy perspective, the risk assessment is carried out
on the client, and no sensitive behavioral information is shared with the relying
party. From a security point of view, the strength of the continuous authenti-
cation depends on the accuracy of the authentication methods used and their
robustness against threats, such observation, spoofing and replay attacks by an
active adversary.

Browser fingerprints are often considered in a risk-adaptive authentication
strategy. Andriamilanto et al. [1] researched the adequacy of browser fingerprints
as an authentication factor. These fingerprints were composed of 216 attributes,
and the analysis was carried out on more than 4 million fingerprints. The authors
investigated their distinctiveness and stability through time, as well as their
collection time and size. Even though they concluded that browser fingerprints
are a promising additional web authentication factor due to the unicity rate of
81 % for 1,989,365 browsers, caution is required. Their own analysis indicates
that the unicity for mobile fingerprints is 39.9 % and far lower than the 88.4 %
for desktop fingerprints. This observation confirms previous results by Spooren
et al. [12]. Also, the impact of countermeasures against tracking, such as FP-
Block [13], is not discussed. Laperdrix et al. [8] investigated canvas fingerprinting,
a subset of browser fingerprinting, as a user-friendly authentication factor. Their
solution is not vulnerable to replay attacks due to its parameterization with a
challenge/response protocol. They investigated more than 1.1 million fingerprints
and found that the technique is sufficiently deterministic for verification even in
the presence of some canvas poisoners that add noise to canvas elements as means
to mitigate tracking. Nonetheless, the authors consider the option for users to
whitelist their solution intended for authentication. As such, they conclude that
canvas fingerprinting is a suitable mechanism. From a privacy perspective, the
authors argued that browser fingerprinting is intrusive due to its ability to link
user visits, a privacy concern that was already raised earlier by Eckersley in
the Panopticlick project [4]. However, the proposed method is intended for first-
party websites that already use first-party cookies to track users, and as such
does not impose any additional linkability threats.

Karegar et al. [6] studied user perceptions on the widely deployed fingerprint
recognition on smartphones, often used to unlock the device or to authenticate
against remote applications. More specifically, they investigated in an online
survey how 100 individuals think that fingerprint recognition works and this in
contrast to PIN codes, as well as privacy and possible other issues with this
biometric authentication factor. They compared the attitudes of users and non-
users. Their user study demonstrated amongst others that even participants
reporting a higher level of knowledge in security do not necessarily have a good
perception about access to fingerprint patterns and PIN codes of mobile apps.

3 AuthGuide: design and implementation

The main use case of AuthGuide is security administrators configuring their
IAM platforms by mapping individual options in AuthGuide onto a specific

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 5

IAM workflow of authentication steps for registration and login. To configure
MFA for different platforms, AuthGuide generates a custom specialized script
to be executed by the security administrator. Additionally, AuthGuide provides
security administrators and end-users a breakdown of various security, privacy
and usability requirements and trade-offs. As such, the goal of AuthGuide is not
to improve any particular authentication factor, but rather to analyze (1) the
security, privacy and usability implications of different authentication factors,
(2) their combination in an MFA configuration, and (3) the consequences of
granting some flexibility on authentication factor selection to the end-user. Our
solution builds upon the NIST set of technical requirements [5] to evaluate the
assurance level of MFA implementations, as well as their impact on privacy and
usability. It validates the configuration options of the security administrator with
respect to the ‘SHALL’ and ‘SHOULD’ requirement notations and conventions
(including the negative forms), the degrees of freedom for customization granted
to the end-user, as well as influences of external elements beyond control of the
security administrator of an IAM and/or end-user.

3.1 Modeling the configuration space of authentication factors

AuthGuide models the configuration space of a variety of knowledge, posses-
sion, inherence, contextual and behavioral authentication factors, and exposes
this body of knowledge to the security administrator in the form of an online
configuration wizard. The configuration options can be set by the IAM’s security
administrator, and optionally further customized by the end-user according to
personal preferences and the availability of the necessary equipment.

Even for relatively simple authentication factors such as passwords, the se-
curity administrator is typically faced with several configuration options that
influence the security and usability trade-off. Some of them are listed below:

– Are passwords a mandatory or an optional authentication factor?
Trade-off: Passwords do not need dedicated hardware, but may be reused.

– What is the minimal length and complexity of a password?
Trade-off: Entering long and strong passwords harms the user experience.

– Does the implementation offer a password strength meter?
Trade-off: Users may not be able to reasonably estimate the relative
strength of different passwords.

– Does the implementation offer to display the secret password?
Trade-off: Displaying the password may simplify entering the correct pass-
word, but make shoulder surfing attacks easier to carry out.

– What is the maximum limit of failed authentication attempts?
Trade-off: A lower limit reduces the security risk, but also the number of
attempts to remember and enter a rarely used password.

– How often should passwords be changed?
Trade-off: Regularly changing passwords improves security, but increases
the mental burden to remember ever-changing passwords.

6 D. Preuveneers et al.

Authenticator Type SHALL SHOULD

Memorized Secrets 24 15
Look-Up Secrets 14 0
Out-of-Band Devices 27 4
Single-Factor OTP Device 11 1
Multi-Factor OTP Devices 20 1
Single-Factor Cryptographic Software 3 1
Single-Factor Cryptographic Devices 9 1
Multi-Factor Cryptographic Software 8 2
Multi-Factor Cryptographic Devices 8 1

Table 1. Amount of requirements (including negative form) by authenticator type.

General Authenticator Requirements SHALL SHOULD

Physical Authenticators 2 0
Rate Limiting 2 1
Use of Biometrics 14 2
Attestation 11 1
Verifier Impersonation Resistance 6 0
Verifier-CSP Communications 1 0
Verifier-Compromise Resistance 5 0
Replay Resistance 0 0
Authentication Intent 1 0
Restricted Authenticators 2 0

Table 2. Amount of general requirements (including negative form) for authenticators.

The first configuration option is one that can be delegated to the end-users to en-
able a passwordless authentication experience for those with alternative means
of authentication. Others can be decided upon by the security administrator,
or be constrained by the underlying authentication platform (e.g. support for
the WebAuthn standard) or the availability of certain hardware (e.g. One-Time
Password devices). Even if an IAM platform offers the above capabilities, the
NIST SP 800-63B [5] guidelines state, for example, that verifiers SHOULD NOT
require memorized secrets−such as passwords−to be changed arbitrarily or pe-
riodically, but only if there is evidence of compromise of the authenticator.

Note that certain end-user choices can have a positive or negative impact on
security and usability over which the security administrator or the MFA imple-
mentation have limited control. Examples are the ability of end-users to store
their passwords (in an unprotected document versus in a password manager),
or the reuse of previous passwords that unknowingly to the end-user and secu-
rity administrator may have already been compromised4. Also security tools like
password managers can raise privacy concerns due to the presence of trackers5.

4 Have I Been Pwned?, https://haveibeenpwned.com/
5 Exodus Privacy: LastPass 4.11.18.6150 has 7 trackers (Mar 2021), https://reports.
exodus-privacy.eu.org/en/reports/165465/

https://haveibeenpwned.com/
https://reports.exodus-privacy.eu.org/en/reports/165465/
https://reports.exodus-privacy.eu.org/en/reports/165465/

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 7

Table 1 gives an overview of the amount SHALL/SHOULD requirements,
including their negative form, for a subset of authenticator types in terms of
how often they occur in the NIST SP 800-63B guidelines. The column SHALL
indicates the number of requirements to be followed strictly, whereas SHOULD
counts the number of preferred but not necessarily required courses of action. We
excluded the CAN and MAY requirements in the table as they are less stringent
(and also less frequent in the guidelines). Table 2 lists in a similar manner the
amount of general requirements for authenticators. From the above two tables,
we discard those implementation specific requirements without any configuration
option. An example of such a requirement for password authenticators is the fact
that the salt SHALL be at least 32 bits in length and be chosen arbitrarily. Such
requirements should be validated directly against the IAM implementations or
specific biometric authentication factors to possibly prohibit their usage. Of the
198 requirements in Tables 1 and 2, AuthGuide discards 125 requirements that
are either irrelevant for the IAM itself (e.g. those targeting end-user devices)
or IAM implementation specific (e.g. use of approved cryptography methods).
The latter can be validated separately if the IAM feature is non-configurable,
or the script generated by AuthGuide directly configures the IAM to meet
the requirements. The actual number of requirements being validated depends
on the remaining configuration options selected in AuthGuide. For example, a
password-less authentication configuration would not check the password-related
requirements (minimum length, acceptable characters, etc.). Other requirements
are conditionally dependent on the desired authenticator assurance level (the
NIST guidelines define 3 levels).

The remaining configuration options for the security administrator and/or
end-user are evaluated by a Drools rule engine6 in AuthGuide. Based on the
responses in AuthGuide the list of requirements is further narrowed down to
consider only those that are relevant for the selected set of authentication factors.
AuthGuide then evaluates (1) the number of relevant requirements and the
amount of violations, (2) a base aggregated score for the SHALL and SHOULD
requirements, and (3) an upper-bound and lower-bound to account for those
options granted to the end-user for customization.

3.2 Registration and replacement of authentication factors

For a given MFA configuration, an authentication factor can be registered or
bound to the account of the end-user during enrollment, or later when the end-
user adds an acceptable authenticator to strengthen the security of the account.

For each authentication factor, there should be a backup and recovery strat-
egy in case the authenticator is not available, lost, damaged, stolen or compro-
mised due to a data breach. These recovery mechanisms need to be secure and
user-friendly as well. For example, SMS and push notifications on a mobile have
been deprecated as authentication factors due to the possibility of phishing or

6 https://www.drools.org

https://www.drools.org

8 D. Preuveneers et al.

SIM swapping attacks [9] or interception by IMSI-catchers. Therefore, recovery
strategies should not rely on them either.

The consequences on the MFA workflow (i.e. the order of different mandatory
and alternative authentication steps) are two-fold: (1) not every end-user will
have the same MFA configuration and the workflow should be able to adapt to
that, and (2) the workflow should support escalation to alternative authentica-
tion factors. For example, end-users that opted for a passwordless authentication
experience should not be shown a form to fill in both their username and pass-
word, but rather only the username.

Fig. 1. The AuthGuide wizard for Multi-Factor Authentication configuration and
requirement validation.

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 9

Fig. 2. The AuthGuide requirement validation summary.

3.3 AuthGuide implementation

AuthGuide is implemented as an HTML5 dashboard on top of a backend im-
plemented with the Java-based Spring MVC framework. The latter maintains
the MFA knowledge base of the wizard to inform the security administrator

10 D. Preuveneers et al.

or end-user about security, privacy and usability concerns. Fig. 1 depicts the
web-based wizard interface to configure Multi-Factor Authentication configura-
tion and carry out the security, privacy and usability trade-off analysis. The
‘AuthGuide Info’ button triggers a pop-up window that offers the security ad-
ministrator or end-user additional background information on possible known
threats and trade-offs.

AuthGuide manages the list of configuration options per authentication
factor, the mapping onto SHALL/SHOULD requirements, and any dependen-
cies across the choices and requirements. Currently, it manages 73 configuration
options in the wizard that are mapped onto a subset of the SHALL/SHOULD
requirements of Tables 1 and 2, and that are conditionally exposed in the wizard
depending on previously selected options. The requirements are implemented as
a ruleset evaluated by the Drools 7.54 rule engine (see Fig. 3 in Appendix for
examples of the ruleset). The main reason to rely on a rule engine rather than
hardcoding a set of if-then-else rules in the application is to simplify the imple-
mentation and evaluation of conditional requirements and dependencies across
requirements. Additionally, by managing these rules external to the application,
they can be easily updated whenever new recommendations are proposed. As
shown in Fig. 2, the outcome of the analysis is a report listing:

– The name of the requirement
– The type of the requirement (i.e. SHALL or SHOULD, or the negative form)
– The outcome of the validation (i.e. PASS or FAIL, and an explanation)
– The name of the Drools rule that produced this result

It also checks for violations against the 3 authentication assurance levels in NIST
Special Publication 800-63B [5], though it is not a full compliance analysis tool
as AuthGuide does not verify the implementation-specific requirements listed
in this report. If certain configuration options can be customized by the end-user,
AuthGuide evaluates both a best-case and a worst-case configuration scenario,
as depicted in Fig. 2. AuthGuide as such can not only inform the user about
security-privacy-usability trade-offs of individual configuration options, but also
about trade-offs for configurations as a whole.

The last feature of AuthGuide is its ability to translate the JSON configu-
ration file produced by the wizard into a configuration shell script for state-of-
practice IAM platforms (currently only tested with Red Hat’s Keycloak 12.0.4) to
simplify the configuration of MFA. The remaining customization left for the secu-
rity administrator before executing this script is to complete the URL end-point
of the IAM and the name of the realm for which MFA needs to be configured.
After completing these deployment specific details, the security administrator
can execute the configuration script to create or update the realm.

4 Evaluation

To evaluate the performance and practical feasibility of AuthGuide, we defined
four different MFA scenarios:

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 11

1. Fixed single factor authentication: This scenario allows for single factor
authentication, using as default the password authenticator. This is a typical
scenario for sites that do not yet support MFA.

2. Flexible single factor authentication: This scenario augments the previ-
ous by allowing the end-user to replace the password authentication factor to
enable a password-less experience (e.g. token or biometric) after enrollment.

3. Mandatory 2FA with fixed authentication factors: The scenario en-
forces 2FA during enrollment of the end-user with the two authentication
factors fixed by the security administrator, i.e. a password combined with a
Time-based One-Time Password (TOTP).

4. Mandatory MFA with flexible authentication factors: This scenario
supports authentication with multiple knowledge, possession, inherence and
context factors. The end-user can customize the configuration and select two
or more factors, but they must belong to different categories.

Each of the above scenarios allows for multiple configurations, for example, by
changing the valid password constraints or the password expiry policy, a 6 or 8
digit TOTP, the number and type of authentication factors in the mandatory
MFA scenario, etc. For each scenario, we produced 3 different variants, resulting
in 12 variants in total.

4.1 Performance evaluation

To validate AuthGuide, we first evaluated the efficiency of validating the SHALL
and SHOULD requirements. We tested each of the 12 variants 10 times in ran-
dom order on a machine with an Intel Core i7-7700U CPU running at 3.60GHz,
and with 32GB of memory. The Spring Boot 2.4.6 application with the embed-
ded Drools 7.54 rule engine runs with OpenJDK 11.0.11 in a Ubuntu 21.04 Linux
environment.

We measured the time the Java application needs for the rule-based analysis,
i.e. excluding the time to complete the AuthGuide wizard. Overall, the time
to evaluate the Drools rules to check the requirements varies between 0.609 and
2.149 milliseconds, which is well below our pre-defined target of 0.1 second. Ad-
ditionally, the memory used by the Java application (i.e. the maximum resident
set size (RSS)) is 678528 kbytes. Based on these results, we believe it would be
practically feasible to carry out the requirements validation directly within the
browser with support of a proper JavaScript-based rule engine. However, to run
AuthGuide’s application logic completely in the browser, the code generation
for the IAM’s configuration script also needs to be refactored and reimplemented.

4.2 Configuration support for the security administrator

For a variant of each of the above 4 scenarios, we compared the time required
to configure a realm within a Keycloak 12.0.4 deployment:

1. Manually through the configuration dashboard of Keycloak

12 D. Preuveneers et al.

Scenario Keycloak
Dashboard

AuthGuide
Dashboard

AuthGuide
Script

Scenario 1 1 min 36 s 35 s 20 s
Scenario 2 2 min 48 s 41 s 23 s
Scenario 3 3 min 51 s 45 s 35 s
Scenario 4 4 min 23 s 59 s 43 s

Table 3. Time to configure 4 single-factor and multi-factor authentication scenarios.

2. Using the shell configuration script produced by AuthGuide

For the second approach, the Keycloak’s ‘kcadm’ command-line utility is already
configured in advance. Both approaches were executed by an experienced Key-
cloak user. Additionally, the authentication flows to be manually configured in
Keycloak for each of the four authentication variants were defined in advance.
The rationale for this decision is the desire to rule out any influences caused by
the need to correct misconfigured authentication flows.

The results of this experiment are shown in Table 3. One should compare
the time required to configure a variant with the Keycloak Dashboard versus
the combined time to achieve the same with the AuthGuide Dashboard and
Script. The time for AuthGuide Script is the time required for the security
administrator to execute the generated script as AuthGuide does not directly
update Keycloak. The time required is less for AuthGuide, and more outspoken
for the more sophisticated authentication flows.

4.3 Analysis of security, privacy and usability trade-off

We evaluated to what extent the different security, privacy and usability re-
quirements in NIST SP 800-63B [5] have been addressed. The result is (a) an
indication of the authenticator assurance level achieved, and (b) the number of
SHALL and SHOULD requirements that have been met relative to the number
of requirements that were assessed (see Fig. 2). The trade-off analysis offers 6
values subdivided by:

– Category: Security, privacy and usability
– Upper- and lower-bound: Best- and worst-case w.r.t. end-user choices

Within the frame of this research, we did not quantitatively evaluate the level of
increased awareness about MFA threats and trade-offs while using AuthGuide,
nor did we investigate MFA configuration mistakes when directly using the IAM’s
configuration interface and AuthGuide’s ability to avoid them. This assessment
involving stakeholders with different levels of IAM expertise and MFA experience
will be part of a future user study.

5 Conclusion

The contribution of this work is AuthGuide, an authentication knowledge and
configuration framework. It aims to increase the awareness about security, pri-

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 13

vacy and usability trade-offs by analyzing to what degree relevant requirements
of NIST SP 800-63B [5] have been addressed, while also considering the im-
plications of granting some flexibility on authentication factor selection to the
end-user. For the security administrator, it simplifies the process of configuring
MFA for a given identity and access management (IAM) platform. Our experi-
mental evaluation demonstrated the practical feasibility and the added benefit
of AuthGuide for the security administrator. A user study evaluating the in-
creased awareness about the aforementioned trade-offs and the ability to avoid
MFA configuration mistakes is pending.

As future work, we aim for a more balanced weighing of the different types
of requirements, as well as enhanced configuration support for alternative IAM
platforms with plug-in support for the validation of implementation specific re-
quirements.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven and by the
Flemish Government’s Cybersecurity Initiative Flanders. Work for this paper
was supported by the European Commission through the H2020 project Cyber-
Sec4Europe (https://www.cybersec4europe.eu/) under grant No. 830929.

References

1. Andriamilanto, N., Allard, T., Guelvouit, G.L.: “guess who?” large-scale data-
centric study of the adequacy of browser fingerprints for web authentication. In:
Barolli, L., Poniszewska-Maranda, A., Park, H. (eds.) Innovative Mobile and Inter-
net Services in Ubiquitous Computing. pp. 161–172. Springer International Pub-
lishing, Cham (2021)

2. Dasgupta, D., Roy, A., Nag, A.: Toward the design of adaptive selection
strategies for multi-factor authentication. Computers & Security 63, 85–116
(2016). https://doi.org/https://doi.org/10.1016/j.cose.2016.09.004, https://www.
sciencedirect.com/science/article/pii/S016740481630102X

3. Dasgupta, D., Roy, A., Nag, A.: Multi-Factor Authentication, pp. 185–233.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-58808-7 5, https://doi.org/10.1007/978-3-319-58808-7_5

4. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) Privacy Enhancing Technologies. pp. 1–18. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

5. Grassi, P., Perlner, R., Newton, E., Regenscheid, A., Burr, W., Richer, J., Lefkovitz,
N., Danker, J., Theofanos, M.: Digital identity guidelines: Authentication and
lifecycle management [including updates as of 03-02-2020] (2017-12-01 2017).
https://doi.org/https://doi.org/10.6028/NIST.SP.800-63b

6. Karegar, F., Pettersson, J.S., Fischer-Hübner, S.: Fingerprint recognition on
mobile devices: Widely deployed, rarely understood. In: Doerr, S., Fis-
cher, M., Schrittwieser, S., Herrmann, D. (eds.) Proceedings of the 13th
International Conference on Availability, Reliability and Security, ARES
2018, Hamburg, Germany, August 27-30, 2018. pp. 39:1–39:9. ACM (2018).

https://doi.org/https://doi.org/10.1016/j.cose.2016.09.004
https://www.sciencedirect.com/science/article/pii/S016740481630102X
https://www.sciencedirect.com/science/article/pii/S016740481630102X
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/10.1007/978-3-319-58808-7_5
https://doi.org/https://doi.org/10.6028/NIST.SP.800-63b

14 D. Preuveneers et al.

https://doi.org/10.1145/3230833.3234514, https://doi.org/10.1145/3230833.

3234514

7. Klieme, E., Wilke, J., van Dornick, N., Meinel, C.: Fidonuous: A
fido2/webauthn extension to support continuous web authentication. In:
2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). pp. 1857–1867 (2020).
https://doi.org/10.1109/TrustCom50675.2020.00254

8. Laperdrix, P., Avoine, G., Baudry, B., Nikiforakis, N.: Morellian analysis for
browsers: Making web authentication stronger with canvas fingerprinting. In:
Perdisci, R., Maurice, C., Giacinto, G., Almgren, M. (eds.) Detection of Intru-
sions and Malware, and Vulnerability Assessment. pp. 43–66. Springer Interna-
tional Publishing, Cham (2019)

9. Lee, K., Kaiser, B., Mayer, J., Narayanan, A.: An empirical study of wireless carrier
authentication for sim swaps. USENIX Association, Virtual Conference (08/2020
2020), https://www.usenix.org/system/files/soups2020-lee.pdf

10. Ometov, A., Bezzateev, S., Mäkitalo, N., Andreev, S., Mikkonen, T.,
Koucheryavy, Y.: Multi-factor authentication: A survey. Cryptography 2(1)
(2018). https://doi.org/10.3390/cryptography2010001, https://www.mdpi.com/

2410-387X/2/1/1

11. Oogami, W., Gomi, H., Yamaguchi, S., Yamanaka, S., Higurashi, T.: Observation
study on usability challenges for fingerprint authentication using webauthn-enabled
android smartphones. In: Symposium on Usable Privacy and Security (SOUPS
2020). USENIX Association (Aug 2020)

12. Spooren, J., Preuveneers, D., Joosen, W.: Mobile device fingerprinting considered
harmful for risk-based authentication. In: Proceedings of the Eighth European
Workshop on System Security. EuroSec ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2751323.2751329, https://
doi.org/10.1145/2751323.2751329

13. Torres, C.F., Jonker, H., Mauw, S.: Fp-block: Usable web privacy by controlling
browser fingerprinting. In: Pernul, G., Y A Ryan, P., Weippl, E. (eds.) Computer
Security – ESORICS 2015. pp. 3–19. Springer International Publishing, Cham
(2015)

14. Wang, D., Zhang, X., Zhang, Z., Wang, P.: Understanding se-
curity failures of multi-factor authentication schemes for multi-
server environments. Computers & Security 88, 101619 (2020).
https://doi.org/https://doi.org/10.1016/j.cose.2019.101619, https://www.

sciencedirect.com/science/article/pii/S016740481930166X

https://doi.org/10.1145/3230833.3234514
https://doi.org/10.1145/3230833.3234514
https://doi.org/10.1145/3230833.3234514
https://doi.org/10.1109/TrustCom50675.2020.00254
https://www.usenix.org/system/files/soups2020-lee.pdf
https://doi.org/10.3390/cryptography2010001
https://www.mdpi.com/2410-387X/2/1/1
https://www.mdpi.com/2410-387X/2/1/1
https://doi.org/10.1145/2751323.2751329
https://doi.org/10.1145/2751323.2751329
https://doi.org/10.1145/2751323.2751329
https://doi.org/https://doi.org/10.1016/j.cose.2019.101619
https://www.sciencedirect.com/science/article/pii/S016740481930166X
https://www.sciencedirect.com/science/article/pii/S016740481930166X

AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in MFA 15

Appendix

1 // 8 characters in length
2 rule "password_min_length :1"
3 activation -group "password_min_length"
4 salience 500
5 when
6 MFARequirement($r: req("password_min_length"), $r != null)
7 $config: MFAConfig(
8 "password" memberOf get("knowledge_factor") &&
9 get("password_min_length") < 8

10)
11 $validate: MFAValidate ()
12 then
13 $validate.add(drools.getRule (). getName(), "Password too short",
14 MFAValidate.FAIL , $r);
15 end
16
17 rule "password_min_length :2"
18 activation -group "password_min_length"
19 salience 100
20 when
21 MFARequirement($r: req("password_min_length"), $r != null)
22 $config: MFAConfig ()
23 $validate: MFAValidate ()
24 then
25 $validate.add(drools.getRule (). getName(), "Success",
26 MFAValidate.PASS , $r);
27 end
28
29 /* ** */
30
31 // Verifiers SHOULD NOT require memorized secrets to be changed
32 // arbitrarily (e.g., periodically)
33 rule "password_expiry :1"
34 activation -group "password_expiry"
35 salience 500
36 when
37 MFARequirement($r: req("password_expiry"), $r != null)
38 $config: MFAConfig(
39 "password" memberOf get("knowledge_factor") &&
40 get("password_expiry") > 0
41)
42 $validate: MFAValidate ()
43 then
44 $validate.add(drools.getRule (). getName(), "Do not set a password
45 expiry policy", MFAValidate.FAIL , $r);
46 end
47
48 rule "password_expiry :2"
49 activation -group "password_expiry"
50 salience 100
51 when
52 MFARequirement($r: req("password_expiry"), $r != null)
53 $config: MFAConfig ()
54 $validate: MFAValidate ()
55 then
56 $validate.add(drools.getRule (). getName(), "Success",
57 MFAValidate.PASS , $r);
58 end

Fig. 3. Analyzing MFA requirements with a Drools ruleset, illustrating an example
’SHALL’ and ’SHOULD’ requirement for passwords from NIST SP 800-63B.

	AuthGuide: Analyzing Security, Privacy and Usability Trade-offs in Multi-Factor Authentication

