
Obfuscation Techniques
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Obfuscation Techniques

• Aims at hardening the process of reverse engineering
▪ Increases level of experience required

▪ Increases cost (time, money)

▪ Imposes the need for specific tools, techniques and procedures

• Applications (some):
▪ License protected software: to prevent the generation of arbitrary licenses or subversion of

the program code

▪ Proprietary software: prevent the recovery of a design pattern or algorithm (IP protection)

▪ Malware: to prevent recovery of the actions, prevent detection, Social Engineer users

João Paulo Barraca 2

REVERSE ENGINEERING

Obfuscation Techniques

Static vs Dynamic

• Static obfuscation frequently transforms code before execution
▪ Maybe before compilation, or during compilation

▪ Countering static analysis

▪ An obfuscated program is complex to analyze

• Dynamic obfuscation transforms code during execution
▪ Countering Dynamic Analysis

▪ The obfuscated program may change its behavior, expand or include further code

João Paulo Barraca 3

REVERSE ENGINEERING

Obfuscation Techniques

Main Categories (Balachandran, TIFS 2013)

• Layout Obfuscation

• Design Obfuscation

• Data Obfuscation

• Control Obfuscation

• Also: Content Type Obfuscation

João Paulo Barraca 4

REVERSE ENGINEERING

Content Type Obfuscation

• Dissimulate one file type as another file type or as raw data
▪ Exploring how the file is processed

▪ Exploring how users interact with it

▪ Exploring how researchers and automatic tools process a file

• Purposes (some):
▪ Marketing, branding and usability

▪ Exploit users through social engineering

▪ Increase the cost required for a reverse engineering task

▪ Carry a malicious payload while escaping manual analysis

▪ Carry a malicious payload bypassing automatic filtering

João Paulo Barraca 5

REVERSE ENGINEERING

Content Type Obfuscation

Marketing, Branding and Usability

• Aims to make a filetype more usable, or to make the brand present
to the user
▪ Benning and common usage

• Approach: file has one specific type, but uses another file extension
▪ Environment has a configuration stating how to handle such file extension

▪ Explores the fact that an Environment uses fixed string to know how to open file

• Impact: File explorers will present a content based on the file
extension, not based on the content

João Paulo Barraca 6

REVERSE ENGINEERING

Content Type Obfuscation

Marketing, Branding and Usability

• For a PPTX file
▪ File reports a zip file and magic is PK

▪ DOCX and XLSX are similar

João Paulo Barraca 7

$ unzip -l 8\ -\ Obfuscation.pptx
Archive: 8 - Obfuscation.pptx
 Length Date Time Name
--------- ---------- ----- ----
 5179 1980-01-01 00:00 ppt/presentation.xml
 12041 1980-01-01 00:00 customXml/item1.xml
 1203 1980-01-01 00:00 customXml/itemProps1.xml
 219 1980-01-01 00:00 customXml/item2.xml
 335 1980-01-01 00:00 customXml/itemProps2.xml
 394 1980-01-01 00:00 customXml/item3.xml
 606 1980-01-01 00:00 customXml/itemProps3.xml
 33895 1980-01-01 00:00 ppt/slideMasters/slideMaster1.xml
 2477 1980-01-01 00:00 ppt/slides/slide1.xml
 4665 1980-01-01 00:00 ppt/slides/slide2.xml
 4384 1980-01-01 00:00 ppt/slides/slide3.xml
 4003 1980-01-01 00:00 ppt/slides/slide4.xml
 4719 1980-01-01 00:00 ppt/slides/slide5.xml

REVERSE ENGINEERING

Content Type Obfuscation

Explore users through social engineering

• Aims to confuse users about the purpose of a file
▪ Malicious and common in phishing campaigns and malware

• Approach: file has a filename and presentation that confuses users
▪ Mail client or explorer presents a safe file with known extension

▪ But… icon is stored in the file metadata, and file has two extensions (file.txt.exe)

• Impact: User thinks that a file is not malicious (e.g, it’s a word
document), while in reality, it executes a malicious code

João Paulo Barraca 8

REVERSE ENGINEERING

Content Type Obfuscation

Explore users through social engineering

• Windows hides extension of known file types
▪ Sample.pptx becomes only Sample

• Executable files may have an embedded icon
▪ Freely defined by the developer

▪ Explorer will show that icon

• A file named Sample.pptx.exe will be shown as Sample.pptx
▪ Users recognize the extension and may think the file is safe

• In a RE task, a file may have bogus extensions

João Paulo Barraca 9

REVERSE ENGINEERING

Content Type Obfuscation

Increase the cost required for a reverse engineering task

• Aims to disguise/manipulate files so that a RE task skips the file, or
processes the file incorrectly

• Approaches:
▪ Hides content in file without extension, without headers or with modified headers

▪ Mangles content to make it less human friendly

▪ Polyglots

• Impact: Reversing or Forensics Analyst will not process the file, or will
not process the file with the correct approach/tools
▪ May prevent the researcher from recovering the original file

João Paulo Barraca 10

REVERSE ENGINEERING

Content Type Obfuscation

Magic Headers

• Besides extensions, most files can be recognized by a magic value
in the file start/end
▪ Manipulating headers can lead to incorrect detection and maybe processing

• Some magic values:
▪ Office Documents: D0 CF 11 E0

▪ ELF: 7F E L F

▪ JPG: FF D8

▪ PNG: 89 P N G 0D 0A 1A 0A

▪ Java class: CA FE BA BE

João Paulo Barraca 11

REVERSE ENGINEERING

Content Type Obfuscation

Magic Headers

• Headers are important to maintain compatibility with third party
software

• Headers may be irrelevant for custom software
▪ Software has the filetype hard coded

João Paulo Barraca 12

REVERSE ENGINEERING

Content Type Obfuscation

Magic Headers

• PyInstaller allows converting Python code to an executable

▪ It packs the pyc files into a container. Container is extracted on runtime and compiled python code is executed

▪ Headers are omitted from pyc files. If header is added, extracted file executes as a standard pyc file

João Paulo Barraca 13

Extracted Reconstructed

Added header

REVERSE ENGINEERING

Code Obfuscation

Layout Obfuscation

• Aims at hiding how the source code is structured
▪ As source code (or symbols) can present enough information to help reversing a program

• Applied to the source code, and focused on situations where source can be obtained
▪ Javascript, HTML, CSS, Java

• Methods:
▪ Deleting comments

▪ Remove debugging information

▪ Renaming classes, methods and variables

▪ Removing spaces

▪ Stripping a binary

João Paulo Barraca 14

REVERSE ENGINEERINGJoão Paulo Barraca 15

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation

• Aims at making the design nonobvious, more difficult to recover
▪ Usually done by a tool before compilation or during compilation

▪ GCC can do this automatically by inlining functions (-O3 –finline -funroll-loops)

• Methods:
▪ Merging and splitting methods

▪ Merging and splitting classes

▪ Splitting binary code, while inserting dummy instructions

▪ Splitting loops and conditions, maybe interleaved with dummy code

▪ Inlining functions

▪ Dead Code

João Paulo Barraca 16

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation – Breaking Code

João Paulo Barraca 17

Code inserted, but never executed.
JMP before dummy code effectively only splits code

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation – Breaking Code

João Paulo Barraca 18

Code inserted, but never executed.
JMP before dummy code effectively only splits code

What about the output binary?

Compile with gcc -O0 -o factorial-split factorial-split.c

Does it effect static or dynamic analysis?
Check with objdump -d and ghidra

What about if instead of jmp you use jz or jnz?

gcc may also inline functions (the opposite) when using –O3
or –finline-functions

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation – Dead Code

João Paulo Barraca 19

• Aims at inserting dummy code to confuse the analysis
▪ Code may follow some pattern (previous example), or be random

▪ Code may lock the analysis tool if recursive disassembly is used

▪ Decompilation to Pseudo C will surely be affected

• Dead code can be added after compilation
▪ May contain fingerprinting information by making binaries unique

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation – Dead Code

João Paulo Barraca 20

r=v, therefore, if(v!=r) will be
always false. Compiler will not easily
discard this code.

__asm__.... Instruction will insert
333 NOPs (which will not be executed)

This is a placeholder that can be used
later for post processing by editing the
binary directly

REVERSE ENGINEERING

Code Obfuscation

Design Obfuscation – Dead Code

João Paulo Barraca 22

REVERSE ENGINEERING

Code Obfuscation

Data Obfuscation

• Encrypts, or otherwise encodes data contents
▪ Contents are decrypted in real time, as the program is executed

▪ Static analysis, or fingerprint matching may fail to correctly recover useful information

▪ Frequent tactic to evade filters

• Why?
▪ Strings frequently carry semantic information, that may help analysis

▪ E.g. Str=“Please input your AES key”: we will know that this a key, and know the
algorithm

João Paulo Barraca 23

REVERSE ENGINEERING

Code Obfuscation

Data Obfuscation - how

• Split the string in parts
▪ May be combined with two conditions or loops to validate both parts individually

• Erase strings right after use

• Common XOR is frequently found as it requires no dependencies and is fast
▪ More recent malware will use RC4 or even AES for this purpose

▪ Decryption key can also be encrypted, and some key may be obtained dynamically

• E.g. from a hardware token as a form of licensing enforcement

• Create a custom encoding based on a complex state machine
▪ May use flow information, voiding the decoding of strings if the execution order it changed

João Paulo Barraca 24

REVERSE ENGINEERING

Code Obfuscation

Control Obfuscation – Opaque Predicates

• Introduces dummy control structures, with little impact to execution
▪ Impact is only from a performance point of view (additional branch)

▪ However, analysis tools will interpret the control structures and create complex CFGs

• Makes use of Opaque Predicates: predicates for which the programmer
already knows the result.
▪ E.g. if (1 > 0) or v=r; if(v==r)

João Paulo Barraca 26

REVERSE ENGINEERING

Code Obfuscation

Control Obfuscation – Opaque Predicates

• Opaque predicates can be more complex

• Manipulate pointers, linked lists, use computation processes

• Result of a predicate can be dynamic, and related to execution state
• Dynamic analysis may change execution sequence, therefore the predicate result and invalidate the execution
• Similar to TPMs, where keys are provided at a valid situation

• Predicate can use dynamic data, received from external services

• Concurrency can be used to create predicates
▪ If two threads are executing with some relation, one can update data, that the other uses to construct a

predicate

▪ Timing information can also be used, to further increase the complexity (information not available
statically)

João Paulo Barraca 27

REVERSE ENGINEERING

Code Obfuscation

Control Obfuscation – Control Flow Flattening

• Removes control flow structures from program
▪ Converts the program to a gigantic Switch, where each condition is a case

▪ Program runs on an infinite loop around the switch

• Program becomes ~4 times slower, and 2 times larger

João Paulo Barraca 28

REVERSE ENGINEERINGJoão Paulo Barraca 29

REVERSE ENGINEERINGJoão Paulo Barraca 30

REVERSE ENGINEERING

Code Obfuscation

Self Decompressing Binaries

• Binaries can be compressed into a blob (and even encrypted)
▪ Stub will process the blob and jump into it

• Static analysis will be able to analyze the stub, which can be obfuscated
▪ Stub provides a valid signature for scanners, but variations can exist

• Actual file is never available to analysis by static scanners
▪ Is available at runtime, as file must be available for execution

▪ Generic packers (upx) will pack the entire ELF, which is mapped at runtime

• Easier to extract as file is recreated and mapped

▪ Crafted packers will require more effort

• Generic approach uses a debugger or Qiling to dump the uncompressed file
▪ For an overview, check: https://kernemporium.github.io/posts/unpacking/

João Paulo Barraca 31

REVERSE ENGINEERING

Code Obfuscation

Self Decompressing Binaries

João Paulo Barraca 32

REVERSE ENGINEERING

Code Obfuscation

Self Decompressing Binaries

João Paulo Barraca 33

	Slide 1: Obfuscation Techniques
	Slide 2: Obfuscation Techniques
	Slide 3: Obfuscation Techniques
	Slide 4: Obfuscation Techniques
	Slide 5: Content Type Obfuscation
	Slide 6: Content Type Obfuscation
	Slide 7: Content Type Obfuscation
	Slide 8: Content Type Obfuscation
	Slide 9: Content Type Obfuscation
	Slide 10: Content Type Obfuscation
	Slide 11: Content Type Obfuscation
	Slide 12: Content Type Obfuscation
	Slide 13: Content Type Obfuscation
	Slide 14: Code Obfuscation
	Slide 15
	Slide 16: Code Obfuscation
	Slide 17: Code Obfuscation
	Slide 18: Code Obfuscation
	Slide 19: Code Obfuscation
	Slide 20: Code Obfuscation
	Slide 22: Code Obfuscation
	Slide 23: Code Obfuscation
	Slide 24: Code Obfuscation
	Slide 26: Code Obfuscation
	Slide 27: Code Obfuscation
	Slide 28: Code Obfuscation
	Slide 29
	Slide 30
	Slide 31: Code Obfuscation
	Slide 32: Code Obfuscation
	Slide 33: Code Obfuscation

