
Android –Static Analysis 1
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

Java Language

• Strict object-oriented programming language
ꟷ Forces an object-oriented model where the main method is in a class

ꟷ Forces a one-class-per-file approach

• The name of the file must match the public class in the source code

• Can be used in a wide range of scenarios
ꟷ Mobile: Android applications <-- focus of this class

ꟷ Desktop: CLI or Desktop applications

ꟷ Server: Web apps using application servers

ꟷ Web: Java Applets, and Java Web Start, sometimes via Java Network Launch Protocol.

• Mostly dead as browsers dropped support due to security concerns

3

REVERSE ENGINEERING

Java Language

• Promotes the moto: Write once, run anywhere
ꟷ Enabled by using bytecode instead of machine code

• Bytecode runs on a Java Virtual Machine
ꟷ JVM implementation interprets bytecode in a pseudo-CPU

ꟷ JVM is implemented natively for each supported architecture

ꟷ Host architectural aspects are not directly exposed to applications

• Access is mediated (and limited) by the interfaces exposed by the JVM

4

REVERSE ENGINEERING

Java Language

• Source files must have .java extension
ꟷ import statement can be used to get features from other classes

• Compiled bytecode is in .class files
ꟷ The class filename matches the class inside, which enables dynamic, on demand

loading.

ꟷ For nested classes, the name of the .class file also reflects this structure

5

REVERSE ENGINEERING

Simple Example

//HelloWorld.java

import java.io.*;

public class HelloWorld {

public static void main(String args[]) {

System.out.println("Hello World");

}

}

6

$ javac HelloWorld.java

$ ls

HelloWorld.java HelloWorld.class

$ java HelloWorld

Hello World

REVERSE ENGINEERING

Nested Example

//Hello.java
import java.io.*;

public class Hello {
public class World{};
public void print() {

System.out.println("Hello World");
}

}

7

$ javac Hello.java

$ ls

'Hello$World.class' Hello.class Hello.java

REVERSE ENGINEERING

Application Entry Points

• An application can be activated by several entry points
ꟷ Present in the AndroidManifest, and must be considered in order to reversing the logic

• Launch Activity: One activity that is selected to start when the application starts.
ꟷ Has a front facing UI

• Services: A block that is executing in the background without a front facing UI.
ꟷ May be activated based on an event or periodically

• Receivers: Activated when it receives an Intent.
ꟷ Explicit or a broadcast (e.g. charger connected)

• Information Providers: A database that provides information to caller applications

• Application subclass: A class defined to run before other components (services, receivers, …)

• Exported components: Activity, Services, Information Providers available to other applications

8

REVERSE ENGINEERING

Application Structure

• Applications are packaged into a single file: APK
ꟷ Actual it’s a glorified ZIP bundling different types of resources

• APK Content
ꟷ ETA-INF/MANIFEST.MF: Same use as in the JAR format.

• May have additional key/value pairs for Android-specific metadata

ꟷ META-INF/*: Other files (for example *.version) that are used to add more detail

ꟷ classes.dex: Compiled and bundled Android classes

• APK may contain other dex files such as classes1.dex, classes2.dex…

ꟷ *.properties: Configuration parameters for frameworks used by the app

ꟷ res/**: Static resources bundled so that they could be used at run-time by the app

ꟷ resources.arsc: A file of compiled resources that are bundled together

• similar to classes.dex but for non-executable objects
9

REVERSE ENGINEERING

APK Files

10

*.java

R.java

res/*

Resources.arsc

AndroidManifest

lib/*

jar classes.dex

app.jar

app.apk

javac dx

jar

aapt

jarsigner

REVERSE ENGINEERING

APK content –Hello World app

11

Unzip app-debug.apk

Full for extraction: Apktool d app-debug.apk

Android Studio

REVERSE ENGINEERING

AndroidManifest.xml

• Contains essential information for app execution
ꟷ Permissions

ꟷ Intents exposed

ꟷ Start classes

• Although with an XML extension it is encoded and compressed
ꟷ Can be obtained with apktool, aapt and many others

• Access to AndroidManifest.xml “is an issue” as it exposes public
interfaces and data sources
ꟷ Can be explored by simple observation/sniffing/injection and no further RE

ꟷ But there is nothing to do about it. It’s always available

12

REVERSE ENGINEERING

AndroidManifest.xml

13

REVERSE ENGINEERING

AndroidManifest.xml

14

REVERSE ENGINEERING

META/MANIFEST.MF

$ cat META-INF/MANIFEST.MF |head

Manifest-Version: 1.0
Built-By: Signflinger
Created-By: Android Gradle 4.1.3

Name: AndroidManifest.xml
SHA1-Digest: dSIYltCV9rAQ5lchK6i7SgU+lU8=

Name: META-INF/androidx.activity_activity.version
SHA1-Digest: BeF7ZGqBckDCBhhvlPj0xwl01dw=

15

APKs are signed
and all hashes are
listed, locking other
files

REVERSE ENGINEERING

classes.dex

• Contains all Dalvik bytecode
ꟷ Reverse engineering from APKs is always easier

• A copy of the APK exists on the phone, but only accessible to root

ꟷ Possible to recover most Java code

• Includes both application code and some Java
libraries
ꟷ Some android/google optional frameworks

ꟷ Additional frameworks the developers required for development

ꟷ May include unused frameworks

ꟷ Doesn’t include base framework classes

• Reversing DEX may follow two approaches
ꟷ Convert to smali, more difficult to understand, but always possible

ꟷ Convert to java sources, easier to understand but not exact

16

./androidx/**

./com/**

./pt

./pt/ua

./pt/ua/deti

./pt/ua/deti/hello

./pt/ua/deti/hello/BuildConfig.smali

./pt/ua/deti/hello/FirstFragment$1.smali

./pt/ua/deti/hello/FirstFragment.smali

./pt/ua/deti/hello/MainActivity$1.smali

./pt/ua/deti/hello/MainActivity.smali

./pt/ua/deti/hello/R$anim.smali

./pt/ua/deti/hello/R$animator.smali

./pt/ua/deti/hello/R$attr.smali

./pt/ua/deti/hello/R$bool.smali

./pt/ua/deti/hello/R$color.smali

./pt/ua/deti/hello/R$dimen.smali

./pt/ua/deti/hello/R$drawable.smali

./pt/ua/deti/hello/R$id.smali

./pt/ua/deti/hello/R$integer.smali

./pt/ua/deti/hello/R$interpolator.smali

./pt/ua/deti/hello/R$layout.smali

./pt/ua/deti/hello/R$menu.smali

./pt/ua/deti/hello/R$mipmap.smali

./pt/ua/deti/hello/R$navigation.smali

./pt/ua/deti/hello/R$plurals.smali

./pt/ua/deti/hello/R$string.smali

./pt/ua/deti/hello/R$style.smali

./pt/ua/deti/hello/R$styleable.smali

./pt/ua/deti/hello/R$xml.smali

./pt/ua/deti/hello/R.smali

./pt/ua/deti/hello/SecondFragment$1.smali

./pt/ua/deti/hello/SecondFragment.smali

REVERSE ENGINEERING

Exercise 1

Analyze the Hello application

17

REVERSE ENGINEERING

The Java Virtual Machine

• The Java bytecode is built for a Stack Based Machine
ꟷ Instructions pop values from stack, and push the result
ꟷ Minimal number of registers (essentially only 2 for arithmetic)
ꟷ Stack stores intermediate data

• Result:
ꟷ very little assumptions about the target architecture (number of registers)
ꟷ maximizes compatibility
ꟷ very compact code
ꟷ simple tools (compiler), simpler state maintenance

• Similar design is used in Cpython, WebAssemble, Postscript, Apache
Harmony and many others

18

REVERSE ENGINEERING

The Java Virtual Machine

19

POP

POP

ADD

PUSH

mov edx, DWORD PTR [rbp-20]

mov eax, DWORD PTR [rbp-24]

add eax, edx

mov DWORD PTR [rbp-4], eax

POP 20

POP 7

ADD 20, 7

PUSH 27

Register Based Stack Based

Image: Mark Vinod Sinnathamby

REVERSE ENGINEERING

The Android Environment

• Android runs Linux with binary programs and Java applications
ꟷ Most user space applications are Java (or HTML)

ꟷ But can load binary objects through JNI or NDK

• The VM differs from the standard JVM, following a register-based architecture
ꟷ Originally named Dalvik

ꟷ Then evolved to ART after Android 4.4

ꟷ Both environments process the Dalvik bytecode from Dalvik Executable (DEX) files

• Focus on better exploring the capability of the hardware, while having low footprint
ꟷ Each application executed in an independent VM instance

ꟷ Crashes and other side effects are limited to one application

ꟷ Data isolation is ensured by the independent execution environments and forced communication
through a single interface

20

REVERSE ENGINEERING 21Image: Mark Vinod Sinnathamby

REVERSE ENGINEERING

Dalvik VM

• Machine model and calling conventions imitate common
architectures and C-style calling conventions
ꟷ The machine is register-based, and frames are fixed in size upon creation.

ꟷ Each frame consists of several registers (specified by the method) as well as any
adjunct data needed to execute the method

ꟷ Registers are considered 32 bits wide. Adjacent register pairs are used for 64-bit values

ꟷ A function may access up to 65535 registers, usually only 16, but 256 may be common.

22

Java Source Code
Java Bytecode

(.class)

Dalvik Code

(.dex)
dex2opt Dalvik VM

Java Compiler DEX Compiler

REVERSE ENGINEERING

Dalvik VM

• Before execution, files are optimized for faster execution
ꟷ Some optimizations include resolving methods and updating the vtable

• Methods have a signature that must be resolved to an actual vtable entry. Optimization changes
bytecode by resolving the method location (index) in the vtable

ꟷ Result is stored as an odex file in the /system/cache

• Applications are stored “twice” as standard (APK with DEX) and optimized versions (ODEX)

• Bytecode is processed using a Just-in-time (JIT) approach
ꟷ The VM will compile and translate code in Real time, during execution

ꟷ Garbage collections tasks also execute in foreground (impact to performance)

23

Java Source Code
Java Bytecode

(.class)

Dalvik Code

(.dex)
dex2opt Dalvik VM

Java Compiler DEX Compiler

REVERSE ENGINEERING

DEX files

• Dalvik EXecutable files are the standard execution format for previous Android versions
ꟷ Created with the dx command:

• In reality: java -Xmx1024M -jar ${SDK_ROOT}.../lib/dx.jar

ꟷ But format is still relevant for in current systems

• Contain Java bytecode that was converted to Dalvik bytecode
ꟷ Java uses stack + 4 registers, while Dex uses 0-v65535 registers

• DEX registers can be mapped to ARM registers (ARM has 10 general purpose registers)

ꟷ Optimized to constraint devices, but not so compact as instructions may be larger
• 1-5 bytes for java, instead of 2-10 bytes

• DEX is highly like Java and bytecode can be converted both ways
ꟷ dx compiles .jar to .dex, dex2jar decompiles .dex to .jar
ꟷ Allows Reengineering applications (download apk, reversing, change, build, sign, publish to store)

24

.java .jar Classes.dex

javac dx

Jadx, jd- dex2jar

REVERSE ENGINEERING

DEX and Java Bytecode

DEX Opcode Java Bytecode Purpose

60-66:sget-*
52-58:iget-*

b2:getstatic
b4:getfield

Read a static or instance variable

67-6d:sput
59-5f:iput

b3:putstatic
b5:putfield

Write a static or instance variable

6e: invoke-virtual
6f: invoke-super
70: invoke-direct
71: invoke-static
72: invoke-interface

b6: Invokevirtual
ba: invokedynamic
b7: invokespecial
b8: Invokestatic
b9: Invokeinterface

Call a method

20: instance-of c1: instanceof Return true if obj is of class

1f: check-cast c0: checkcast Check if a type cast can be performed

bb:new 22: new-instance New (unconstructed) instance of object

25

Class, Method, and Fields

REVERSE ENGINEERING

DEX and Java Bytecode

26

Arithmetic Instructions

DEX Opcode Java Bytecode Purpose

12-1c: const*
12:ldc
13: ldc_w
14: ldc2_w

Define Constant

21: array-length be: arraylength Get length of an array

23: new-array bd: anewarray Instantiate an array

24-25: filled-new-array[/range]
26: fill-array-data

N/A Populate an array

REVERSE ENGINEERING

DEX and Java Bytecode

DEX Opcode Java Bytecode Purpose

32..37: if-*
38..3d: if-*z

a0-a6: if_icmp*
99-9e: if*

Branch on logical

2b: packed-switch ab: lookupswitch Switch statement,

2c: sparse-switch aa: tableswitch Switch statement

28: goto
29: goto/16
30: goto/32

a7: goto
c8: goto_w

Jump to offset in code

27: throw bf:athrow Throw exception

27

Flow Control

REVERSE ENGINEERING

Android RunTime (ART)

• Alternative runtime which presents an optimized execution path
ꟷ Introduced in Android 4.4, implemented in C++, and supports 64bits
ꟷ Runs OAT files, which contain native code (not bytecode!)
ꟷ References to Java objects point towards C++ objects managed by the VM

• While application logic is expressed in Java, framework methods actually execute in native code!

• ART introduces ahead-of-time (AOT) compilation
ꟷ At install time, ART compiles apps using the on-device dex2oat tool.
ꟷ This utility accepts DEX files as input and generates a compiled app executable for the target device
ꟷ Improves performance over ODEX files as file repetitive load operations are avoided

• Improves Garbage Collection by optimizing memory usage
ꟷ Avoiding GC driven app pauses
ꟷ Overall, it provides much better performance (more on this later)
ꟷ JIT is not that efficient and doing it on real time hurts performance and battery

28

Java Source
Code

Java Bytecode
(.class)

Dalvik Code

(.dex)
dex2oat ART

REVERSE ENGINEERING 29

REVERSE ENGINEERING

ART specific files

• .oat – only at /system/framework/[arch]/boot.oat
ꟷ Main ART format, OAT: Of Ahead Time (from Ahead of Time)

• “We went with that because then we say that process of converting .dex files to .oat files would be called quakerizing
and that would be really funny.”, reference to the Quaker Oats Company

ꟷ It’s an ELF file containing OAT data

• .odex – an .OAT file containing the precompiled applications
ꟷ Although it uses the same extension, .odex files with ART are .OAT files, in reality ELF files
ꟷ Stored in /data/dalvik-cache

• But Dalvik is not used with ART…

• .art – only at /system/framework/[arch]/boot.art
ꟷ An .OAT file containing vital framework classes (base Java classes to be used by ART)

• .vdex - contains the uncompressed DEX code of the APK, with some
additional metadata to speed up verification
ꟷ Assumed to be already verified DEX files

30

REVERSE ENGINEERING

OAT files (or DEX files in ART, which are also OAT)

• Are ELF files containing DEX code
ꟷ OAT Header, followed by DEX files in an ELF container
• DEX files can be extracted with oat2dex

• Java methods in DEX file are mirrored in C++
ꟷ java.lang.String: -> art::mirror::String

ꟷ When the Java code creates an object, the object is created in the C++ (native) code by
the VM
• JVM handles references to the C++ object

• On boot, common objects are instantiated (ones in Android
Framework) by loading boot.art
ꟷ To speed up execution as such classes are required by most applications

31

REVERSE ENGINEERING

Exercise 2

Check the Class Workbook

32

REVERSE ENGINEERING

Smali and Baksmali

• Assembler/disassembler for the DEX format used by Dalvik
ꟷ smali = “assembly” of the DEX bytecode

ꟷ backsmaling = decompiling to smali

• Allows converting a DEX blob to something “more human friendly”
ꟷ Similar to Assembly language in a common CPU

• Why? Isn’t DEX <-> class possible?
ꟷ With recent compiler optimizations (and Kotlin, and obfuscation) not always…

ꟷ It’s possible to compile DEX (smali)->class->Java, but code may not be correct

ꟷ Use of smali enables patching DEX bytecode directly (although it’s more complex)

33

REVERSE ENGINEERING

HelloWorld.smali

34

REVERSE ENGINEERING

Hello Android App

35

REVERSE ENGINEERING

Obfuscation

• Quite a few DEX “obfuscators” exist, with different approaches:
ꟷ Functionally similar to binutils’ strip, either java (ProGuard) or sDEX

ꟷ Rename methods, field and class names

ꟷ Break down string operations so as to “chop” hard-coded strings, or encrypt

ꟷ Can use dynamic class loading (DexLoader classes) to impede static analysis

ꟷ Can add dead code and dummy loops (at minor impact to performance)

ꟷ Can also use goto into other instructions (or switches)

• Additional advantage: As obfuscators remove dead code,
applications become smaller

36

REVERSE ENGINEERING

Obfuscation

• In practice, obfuscation is quite limited, due to:
ꟷ Reliance on Android Framework APIs (which remain unobfuscated)

ꟷ JDWP and application debuggability at the Java level

ꟷ If Dalvik can execute it, so can a proper analysis tool

ꟷ Popular enough obfuscators have de-obfuscators...

ꟷ Cannot obfuscate Activities

• About 25% of applications have some form of obfuscation
ꟷ Dominik Wermke et al, “A Large Scale Investigation of Obfuscation Use in Google Play”,

2018 which analysed 1.7M apps

37

REVERSE ENGINEERING

Obfuscation objectives
• Code shrinking (or tree-shaking): detects and safely removes unused classes, fields, methods, and

attributes

• Resource shrinking: removes unused resources from a packaged app, including unused resources
in the app’s library dependencies.

• Obfuscation: shortens the name of classes and members, which results in reduced DEX file sizes.

• Optimization: inspects and rewrites your code to further reduce the size of your app’s DEX files.
ꟷ Unreachable code is removed from the application

38

REVERSE ENGINEERING

How to enable

39

REVERSE ENGINEERING

Exercise 3 & 4

Check the Class Workbook

40

REVERSE ENGINEERING

Exercise 3 – Application is leaking data – Fix in Smali

• Process:
ꟷ Extract data from apk with apktool: apktool d app-release.apk

ꟷ Fix the smali code

ꟷ Repackage the apk: apktool b app-release

• The issue:
ꟷ Clear the log: adb logcat -c

ꟷ Filter by pid: adb logcat --pid=$(adb shell pidof pt.ua.deti.hello)

ꟷ Ignore all processes, except for tag hello: adb logcat -s “*:S hello”

41

REVERSE ENGINEERING

Exercise 3 – Application is leaking data – Fix in Smali
• Offending code: app-release/smali/pt/ua/deti/hello/MainActivity.smali

• “The FIX”

• Deploy:
ꟷ apktool b app-release --use-aapt2

ꟷ java -jar uber-apk-signer-1.2.1.jar --apks app-release/dist/app-release.apk

ꟷ adb uninstall pt.ua.deti.hello

ꟷ adb install app-release/dist/app-release-aligned-debugSigned.apk

42

REVERSE ENGINEERING

Exercise 3 – Application is leaking data – Fix in Smali

• Deploy:
ꟷ apktool b app-release --use-aapt2

ꟷ java -jar uber-apk-signer-1.2.1.jar --apks app-release/dist/app-release.apk

ꟷ adb uninstall pt.ua.deti.hello

ꟷ adb install app-release/dist/app-release-aligned-debugSigned.apk

• Verification:
ꟷ adb logcat –s “*:S hello”

43

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• Approach
ꟷ Extract all code and resources: jadx-gui

ꟷ Inspect Manifest for a suspicious permission (Send SMS): AndroidManifest.XML

ꟷ Determine if the app is sending SMS: Check the java classes, look for SMS send methods

ꟷ Determine if the SMS is sent without interaction from the user

• How are functions called?

• What is the call flow?

44

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• For a camera application, some permissions are suspicious
ꟷ Including android.permission.SEND_SMS

ꟷ Therefore, we have indications of possible taints

Add a footer 45

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• In com.p004cp.camera.loading an SMS is sent
ꟷ As an action of clicking a button. With static analysis is seems to be ok.

46

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• There is a sendMessage method with two arguments (number and text)
ꟷ Logs the event to Firebase

ꟷ Splits the message in chunks and submits multiple SMS

ꟷ But… how is this function called?

47

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• In several places, but one is strange

48

this.service = phone number

Where are these coming
from?

this.content = text to send

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• Loading::onCreate

49

Login and gets data

Sets the this.service

IMEI?

Under some situations,
this.service is set again
and seems to be dependent
on the operator or IMEI

REVERSE ENGINEERING

Exercise 4 – Thai Camera is sending SMS?

• Going back to the previous location
ꟷ The permission is requested
ꟷ And if authorized and this.service is set, an SMS is sent automatically (without user interaction)

• To recap:
ꟷ Application sends SMS: True
ꟷ Application sends SMS onClick by the user: True
ꟷ However….
ꟷ An SMS is sent automatically when the permission is granted
ꟷ The destination number is not controlled by the user. Value is set on create, comes from external server
ꟷ It has to do with IMEI and Operator: This is an indication of a Premium SMS Fraud

50

REVERSE ENGINEERING

Can this process be improved? Yes

• Flow Analysis: the execution flow can be analyzed and reconstructed,
allowing to understand entry and sink points
ꟷ Identify all methods, and their callers: Sources/Entry Points

• Events, Intent Receivers

ꟷ Identify which arguments are used… eventually do symbolic analysis

ꟷ Identify which Android APIs are called: Sink Points
• Information is sent/registered using the Android API

• Taint Analysis: Identify patterns which may indicate suspicious behavior
ꟷ E.g. access contacts, upload contacts

• Dynamic Analysis: actually analyze what the application done, in real
time

51

REVERSE ENGINEERING

Flow Analysis and Taint Analysis

• Android Studio:
ꟷ If Java code can be obtained, Android Studio creates call flows

• Analyze Tab -> Data Flow From Here

• Quark:
ꟷ One of many tools providing Flow Analysis and Taint Analysis

ꟷ Targeted towards malware

• Identifies malicious or suspicious behavior, and ranks each taint

• Provides limited call graph information through static analysis

ꟷ Based on smali directly from the apk

ꟷ Available: https://github.com/quark-engine/quark-engine

52

https://github.com/quark-engine/quark-engine

REVERSE ENGINEERING

Quark and Thai Camera?
• install:

ꟷ pip3 install --user quark-engine

ꟷ freshquark

• quark -s –a “ThaiCamera_v1.2.apk”
ꟷ [!] WARNING: Moderate Risk

• Some indicators (remember, it’s a Camera App!)
ꟷ Get calendar information

ꟷ Read sensitive data(SMS, CALLLOG) and put it into JSON object

ꟷ Get the network operator name

ꟷ Get data from HTTP and send SMS

ꟷ Send IMSI over Internet

ꟷ Get the network operator name and IMSI

ꟷ Write SIM card serial number into a file

ꟷ Write the phone number into a file

ꟷ Check if successfully sending out SMS

• But: It is common to find taints on included SDKs (google, facebook)
ꟷ Analyst must look at the actual location of the taints

53

