
Introduction to Reverse Engineering
REVERSE ENGINEERING

João Paulo Barraca

REVERSE ENGINEERING

What is Reverse Engineering (RE)

• Reverse Engineering (RE) is the process of extracting features from any
man-made artifact (Engineered)

▪ Knowledge

▪ Design blueprints

▪ Function

• It’s not purely scientific research: with RE the artifact was engineered

▪ The scientific process doesn’t generically focus on a product
• Focus is on mechanisms, processes, events, phenomena

• … and we have no idea whether the universe was engineered or not ☺

João Paulo Barraca 2

REVERSE ENGINEERING

What is Reverse Engineering (RE)

João Paulo Barraca 3

Images belong to their respective owners

Forward Engineering

The process of analyzing a subject system to identify the system’s components and their
interrelationships and to create representations of the system in another form or at a

higher level of abstraction

Chikofsky, E. J.; Cross, J. H. (January 1990). "Reverse engineering and design recovery: A taxonomy" (PDF). IEEE Software. 7: 13–17. doi:10.1109/52.43044

REVERSE ENGINEERING

What is Reverse Engineering (RE)

The process of analyzing a subject system to identify the system’s components and their
interrelationships and to create representations of the system in another form or at a

higher level of abstraction

Chikofsky, E. J.; Cross, J. H. (January 1990). "Reverse engineering and design recovery: A taxonomy" (PDF). IEEE Software. 7: 13–17. doi:10.1109/52.43044

João Paulo Barraca 4

Images belong to their respective owners

Reverse Engineering

REVERSE ENGINEERING

What is Reverse Engineering (RE)

The process of analyzing a subject system to identify the system’s components and their
interrelationships and to create representations of the system in another form or at a

higher level of abstraction

Chikofsky, E. J.; Cross, J. H. (January 1990). "Reverse engineering and design recovery: A taxonomy" (PDF). IEEE Software. 7: 13–17. doi:10.1109/52.43044

João Paulo Barraca 5

Images belong to their respective owners

Reverse Engineering

REVERSE ENGINEERING

What is Reverse Engineering (RE)

Requirements Analysis Design Implementation

6

Forward Engineering

Reverse Engineering

• Processes are not perfect, in either direction.
• Implementation may not fully comply with requirements, while reversed engineered analysis may not fully represent the

implementation design, and design will be limited

REVERSE ENGINEERING

RE Concepts

• Abstraction Level
▪ The result of a RE process will produce a design at a given abstraction level.

▪ The higher the better

• Completeness
▪ Level of detail at the abstraction level.

▪ The greater the better

• Interactivity
▪ How much humans are required for RE.

▪ The lesser the better (higher automation)

7

REVERSE ENGINEERING

When do we have RE activities?

• RE always evolved with engineering and existed since its dawn

▪ It is frequently done informally by everyone in their daily lives

• Every time we look at a software/device/system and try to understand how
it works, or understand any aspect of its behavior and structure

▪ Because we want to make a better one

▪ Because we wish to estimate if it suits a purpose…

• Every time we look at our code and try to find what it was supposed to do

▪ Especially when there is no documentation

8

REVERSE ENGINEERING

Why RE is Relevant and Required

Personal Education

• Observing a product allows anyone to learn from its characteristics.
▪ Why it behaves that way
▪ What it does
▪ How it does something
▪ Why something doesn’t happen

• One can complement engineering education by observing code/products made by
others
▪ Open-source software plays an important role here

• Because it the source is available, it doesn’t mean that structure, components, etc… are readily available or
understood

▪ Actually… instead of learning from patterns, why not learn from its application as implemented
by other professionals?
• There are a lot of “hidden” subtleties due to the experience of their authors

João Paulo Barraca 9

REVERSE ENGINEERING

Why RE is Relevant and Required

• Products are engineered in order to provide some value, and turn profit

▪ Some value = value perceived by the buyers, in relation to other products

▪ Profit = max price for the minimal cost

• Products are frequently built to promote further revenue

▪ Support contracts, build an ecosystem, help sell other products

▪ Closed in their interfaces and limited in their feature set

• Reverse engineering can be used to increase the feature set

▪ After the product is made, and without cooperation from manufacturer

João Paulo Barraca 10

Work around limitations

REVERSE ENGINEERING

Why RE is Relevant and Required

João Paulo Barraca 11

Work around limitations

Magic Lantern extends existing Cameras
with a huge amount of extra features

https://magiclantern.fm/

3D scanning vehicles enables aftermarket
variants to produce alternative parts

https://www.creaform3d.com/

Observing existing parts allows new parts
to be designed to improve reliability,

performance, design..

REVERSE ENGINEERING

Why RE is Relevant and Required

• A product is developed for a set of scenarios. What if we want it to operate on
another, unexpected, environment?

• RE allows obtaining relevant design/operation information
▪ To modify the product to fit the new environment
• Some components may be reconstructed

▪ To build adapters integrating the product

• In corporate world it’s standard to have products adapted to a specific use case
▪ Process takes a long time, and is expensive
▪ RE may provide a simpler route
▪ Especially relevant if the manufacturer doesn’t provide that service
• Or simply doesn’t exist

João Paulo Barraca 12

Make a product compatible

REVERSE ENGINEERING

Why RE is Relevant and Required

• Make/DIY movements are keen on RE

• Driven by integrating and enhancement
▪ Mostly for personal use

▪ Community driven

• Frequently without cooperation from manufacturers
▪ Alarms: ParadoxAlarmInterface/pai

▪ Sports bracelets: Gadgetbridge

• Sometimes with some collaboration
▪ Magic Lantern

13

Unkown tuya chip - Hardware - Home Assistant Community (home-assistant.io)

Make a product compatible

https://github.com/ParadoxAlarmInterface/pai
https://gadgetbridge.org/
https://magiclantern.fm/
https://community.home-assistant.io/t/unkown-tuya-chip/153591/23

REVERSE ENGINEERING

Why RE is Relevant and Required

• Companies must determine the values/weaknesses of products in competing markets

▪ What strategies/materials/methods/technology are used by competitors

▪ Helps segmenting market and setting prices

▪ Helps acquiring knowledge to develop new product

• Also: does a certain product violates a patent of ours?

▪ Includes patented designs

• RE can be used for that purpose

▪ and can feed information to engineering

▪ determine the need for judicial actions protecting Intellectual Property

João Paulo Barraca 14

Learn from other’s products or from products of other domains

REVERSE ENGINEERING

Why RE is Relevant and Required

João Paulo Barraca 15

Learn from other’s products or from products of other domains

http://www.righto.com/2016/04/teardown-of-cmos-555-timer-chip-how.html https://sec-consult.com/ https://dewyseng.com/

No affiliation with referred brands

REVERSE ENGINEERING

Why RE is Relevant and Required

• Engineers frequently assume that an engineered entity is known (They trust dependencies)
▪ That is… if you develop something, you know what it does

▪ Also assume (or wish) that documentation exists

• What if:
▪ documentation is lost?

▪ the blob is external to the company?

▪ the blob is misbehaving?

▪ the blob was modified?

▪ the engineer/supplier is not trusted?

▪ the part is fake?

▪ the company needs to validate the design process?

• RE can recover a similar design from the implementation, independently of the documentation, or the
original design

João Paulo Barraca 16

Finding the purpose of a certain code/binary blob or part

REVERSE ENGINEERING

Why RE is Relevant and Required

João Paulo Barraca 17

Finding the purpose of a certain code/binary blob or part

https://zeptobars.com/en/read/FTDI-FT232RL-real-vs-fake-supereal

Fake FT232RL Genuine FT232RL

REVERSE ENGINEERING

Why RE is Relevant and Required

• Implementation may deviate from design
▪ … it always deviates

• Implementation may present flaws due to unseen aspects
▪ Processes used

▪ Technology used

▪ Interaction with additional components

▪ Manufacturing flaws

▪ Knowledge and experience

• RE is used in the scope of software testing to validate systems
▪ Symbolic execution and Fuzzy testing are ways of helping the reverse engineering

▪ Characterize if a given implementation reproduces the expected design

▪ Identify additional modes

João Paulo Barraca 18

Discovering flaws and faults

REVERSE ENGINEERING

Why RE is Relevant and Required

• For Anti-Virus, and Malware researchers, source code is not available
▪ Or for offensive/red teams in black box scenarios

• Malware detection relies on reverse engineering to understand programs
▪ RE allows the identification of patterns of malicious code

▪ May rely on:
• Interaction patterns
• Bytecode structure

• Communication with external hosts

• Binary structure
• Text contents

• …

• Some RE is done in real time to find unknown malware
▪ Or at least to identify suspect code, triggering further inspection

João Paulo Barraca 19

Find and analyze malicious code

REVERSE ENGINEERING

Limitations

• May be illegal in some cases, or lead to ambiguous situations
▪ Higher risk of jeopardizing products developed

• Requires trained and experienced staff
▪ Which is not abundant

• It’s costly in terms of time, resources and money
▪ Expensive tools, scarce number of researchers, lengthy process

• May lead to incomplete or incorrect designs.
▪ No guaranteed result!
▪ An RE activity may be a complete waste of resources (time, staff, money)

20

REVERSE ENGINEERING

Legal Framework

• The legality of RE is not assured a priori
▪ varies with jurisdiction
▪ varies with what is being reversed
▪ varies with the purpose of the RE activity
▪ varies with the impact to the product owner

• Applicable legislation:
▪ USA: Digital Millennium Copyright Act
▪ EU: EU Directive 2009/24

• This only applies to third parties
▪ Product owners are free to use their own products as they seem fit
▪ RE for the purpose of Software Quality Control

João Paulo Barraca 21

REVERSE ENGINEERING

Legal Framework

Allowed situations (Europe, Directive 2009/24/EC)

The unauthorized reproduction, translation, adaptation or transformation of the form of the
code in which a copy of a computer program has been made available constitutes an
infringement of the exclusive rights of the author.

• .. circumstances may exist when such a reproduction of the code and translation of its
form are indispensable to obtain the necessary information to achieve the
interoperability of an independently created program with other programs.

• .. in these limited circumstances only, performance of the acts of reproduction and
translation by or on behalf of a person having a right to use a copy of the program is
legitimate and compatible with fair practice…

João Paulo Barraca 22

REVERSE ENGINEERING

Legal Framework

Allowed situations (Europe, Directive 2009/24/EC)

• Article 5 b): To learn

The person having a right to use a copy of a computer program shall be entitled,

without the authorisation of the rightholder, to observe, study or test the
functioning of the program in order to determine the ideas and principles
which underlie any element of the program if he does so while performing any of
the acts of loading, displaying, running, transmitting or storing the program which he is
entitled to do.

• Broad Interpretation: if you own a legitimate copy of the software, and are
able to load it/run it/etc… you may analyze it for the purpose of learning

João Paulo Barraca 23

REVERSE ENGINEERING

Legal Framework

Allowed situations (Europe, Directive 2009/24/EC)

• Article 5 b): To learn

• Caveats:
▪ Replicating an algorithm may not be allowed, as a copy of the work infringes the

copyright
▪ Copy protection mechanism cannot be overcome
• If there is a copy protection and you cannot freely execute the program, you do not have

authorization to use it

▪ Methods for bypassing protections are not legal
• Crackers, keygens

• EULAs cannot restrict RE tasks

João Paulo Barraca 24

REVERSE ENGINEERING

Legal Framework

Allowed situations (Europe, Directive 2009/24/EC)

• Article 6: Decompilation is generally allowed for the purposes listed in this directive,
but mostly focusing on interoperability

• (allowed when) indispensable to obtain the information necessary to achieve the
interoperability of an independently created computer program with other programs

• Provided that the following conditions are met:

▪ those acts are performed by the licensee or by another person having a right to use a copy of
a program, or on their behalf by a person authorized to do so

▪ the information necessary to achieve interoperability has not previously been readily available
to the persons referred to in point (a); and

▪ those acts are confined to the parts of the original program which are necessary in order to
achieve interoperability.

João Paulo Barraca 25

REVERSE ENGINEERING

Legal Framework

Allowed situations (USA, DMCA)

• Interoperability: even circumventing DRM

• Encryption research: if the protection prevents the evaluation of the technology

• Security testing: determine if a software is secure and to improve it

• Regulation: to limit what information is presented to minors

• Government Investigation: government agencies are not affected

• Privacy protection: users may reverse and circumvent data gathering technologies

• EULAs may restrict RE actions, although this is not guaranteed by law

João Paulo Barraca 26

Eldad Eilam, 2005

REVERSE ENGINEERING

What RE Recovers?

• System structure: its components and their interrelationships, as expressed by their

interfaces

• Functionality: what operations are performed on what components

• Dynamic behavior: system understanding about how input is transformed to output

• Rationale: design involves decision making between a number of alternatives at each
design step

• Construction: modules, documentation, test suites, etc.

27

Chih-Wei Lu et al, “Reverse Engineering”, Handbook of Software Engineering and Knowledge Engineering, Vol.2

REVERSE ENGINEERING

Software Reversing Levels

System Level Reversing

• Observe how the software is provided and how it operates
▪ Involves analyzing the environment, packaging, dependencies, and then

observed behavior

▪ May require tools to intercept traffic, system calls, input/output

• End goal: collect information to direct further analysis
▪ Important in order to select tools, processes, and overall strategy
• Language use, packaging algorithms, encryption

▪ Important to characterize behavior and identify external dependencies
• Remote servers involved, files accessed, communication channels used

28

REVERSE ENGINEERING

Software Reversing Process

Code Level Reversing

• Extract design concepts and algorithms from binaries
▪ Compiled to binary code or bytecode.

• It’s a complex, architecture dependent process
▪ Some say “an art form”
▪ Expensive enough that competitive RE is not usually pursued
• To fully reverse and reassemble a given competing software (except in some cases)

• Makes use of tools capable of representing the low-level language in something
“human compatible”
▪ Compiler optimization and obfuscation make this process uncertain
▪ Perfect reconstruction is frequently impossible as low-level languages do not use the

same constructs as higher-level ones

29

REVERSE ENGINEERING

Software Reversing Activities

• Understanding the processes

▪ Large scale observation of the program at a process level

▪ Identification of major components and their functionality

• Understanding the Data

▪ Understand data structures used

• Understanding Interfaces

▪ Which interfaces exist and how the process reacts to them

30

REVERSE ENGINEERING

Software Reversing

• Programs are developed in a high-level programming languages

▪ C, C++, C#, Java, Python, Go…

• A compiler converts the high-level instructions to low level instructions

▪ Machine Code: instructions that are executed directly by the CPU

▪ Bytecode: instructions that are executed by a middleware, VM or Interpreter

• Reverse Engineering involves understanding low level instructions

▪ Which is not easy and is costly

▪ Requires knowledge of the specific target being analyzed (the VM, the CPU)
• Different CPUs have different opcodes and execution behavior

João Paulo Barraca 31

REVERSE ENGINEERING

Low level languages

Machine Code

• Each CPU has a specific instruction set
▪ Associated to rules regarding structure, execution flow,

• When a program is compiled to “binary”, the high-level logic is converted to a
sequence of instructions
▪ This sequence may be executed by a family of CPUs or a single model

▪ Running this sequence on another CPU may involve binary translation (conversion)

• Humans are typically not capable of reading binary instructions, but
instructions are always able to be translated to Assembly
▪ Good: We can read binary code

▪ Bad: each CPU has a specific variant of Assembly. Also, assembly is not simple.

32

REVERSE ENGINEERING

Low level languages

Machine Code

33

//x86_64 gcc 5.4
square(int):

push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov eax, DWORD PTR [rbp-4]
imul eax, DWORD PTR [rbp-4]
pop rbp
ret

//MIPS64 GCC 5.4
square(int):

daddiu $sp,$sp,-32
sd $fp,24($sp)
move $fp,$sp
move $2,$4
sll $2,$2,0
sw $2,0($fp)
lw $3,0($fp)
lw $2,0($fp)
mult $3,$2
mflo $2
move $sp,$fp
ld $fp,24($sp)
daddiu $sp,$sp,32
j $31
nop

//PowerPC GCC 4.8.5
square(int):

stwu 1,-32(1)
stw 31,28(1)
mr 31,1
stw 3,8(31)
lwz 10,8(31)
lwz 9,8(31)
mullw 9,10,9
mr 3,9
addi 11,31,32
lwz 31,-4(11)
mr 1,11
blr

//ARM64 GCC 5.4
square(int):

sub sp, sp, #16
str w0, [sp, 12]
ldr w1, [sp, 12]
ldr w0, [sp, 12]
mul w0, w1, w0
add sp, sp, 16
ret

// Original C
int square(int num) {

return num * num;
}

Compiler Explorer (godbolt.org)

https://godbolt.org/

REVERSE ENGINEERING

Low level languages

Machine Code

• For compiled programs, the RE tasks involves extracting information
from the sequence of Assembly instructions

▪ Disassembly is automatic, the rest frequently it isn’t

• Reconstruction is never perfect!

▪ Different level of abstraction: e.g., it is not trivial to recover C++ class structure
and OOP relations from Assembly code

▪ Different compilers generate different assembly for the same source code

▪ Same compiler may generate different assembly for the same source code
• Optimization flags, CPU matching, protection mechanisms, target object type…

34

REVERSE ENGINEERING

Low level languages

Bytecode

• Some languages are compiled to a bytecode (!= machine code)
▪ Intermediate language that is processed by a VM or framework
▪ .NET, Java, Python, JS, LISP, LUA, Ocaml, Tcl, FoxPro, WebAssembly

• Bytecode contains a compact (optimized) representation of the higher layer structures
▪ Framework/VM will execute bytecode in the target CPU
▪ Same bytecode usually can be executed in multiple CPUs, provided there is a native VM

implementation
• The Java moto: Write Once, Run Anywhere

• Bytecode allows easier extraction of information, provided there is such route
▪ May recover classes, function names, and even comments (but not always)
▪ Traditional decompiling tools will not process bytecode (that easily)

35

	Slide 1: Introduction to Reverse Engineering
	Slide 2: What is Reverse Engineering (RE)
	Slide 3: What is Reverse Engineering (RE)
	Slide 4: What is Reverse Engineering (RE)
	Slide 5: What is Reverse Engineering (RE)
	Slide 6: What is Reverse Engineering (RE)
	Slide 7: RE Concepts
	Slide 8: When do we have RE activities?
	Slide 9: Why RE is Relevant and Required
	Slide 10: Why RE is Relevant and Required
	Slide 11: Why RE is Relevant and Required
	Slide 12: Why RE is Relevant and Required
	Slide 13: Why RE is Relevant and Required
	Slide 14: Why RE is Relevant and Required
	Slide 15: Why RE is Relevant and Required
	Slide 16: Why RE is Relevant and Required
	Slide 17: Why RE is Relevant and Required
	Slide 18: Why RE is Relevant and Required
	Slide 19: Why RE is Relevant and Required
	Slide 20: Limitations
	Slide 21: Legal Framework
	Slide 22: Legal Framework
	Slide 23: Legal Framework
	Slide 24: Legal Framework
	Slide 25: Legal Framework
	Slide 26: Legal Framework
	Slide 27: What RE Recovers?
	Slide 28: Software Reversing Levels
	Slide 29: Software Reversing Process
	Slide 30: Software Reversing Activities
	Slide 31: Software Reversing
	Slide 32: Low level languages
	Slide 33: Low level languages
	Slide 34: Low level languages
	Slide 35: Low level languages

