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BO - According to CAPEC-100

➢Targets improper or missing bounds checking on buffer operations
▪ typically triggered by input injected by an adversary.

➢An adversary is able to write past the boundaries of allocated 
buffer regions in memory

➢Causes a program crash or potentially redirection of execution as 
per the adversaries' choice.
▪Denial of Service

▪ (Remote) Code Execution
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BO - Scope

➢CWE-119 is extremely broad as there are many types of BO

➢Characteristics of a BO
▪Type of access: Read or Write

▪Type of memory: stack, heap

▪Location: before or after the buffer

▪Reason: iteration, copy, pointer arithmetic, memory clear, mapping
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Other Direct Child CWEs

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-125 Out-of-bounds Read

CWE-466 Return of Pointer Value Outside of Expected Range

CWE-786 Access of Memory Location Before Start of Buffer

CWE-787 Out-of-bounds Write

CWE-788 Access of Memory Location After End of Buffer

CWE-805 Buffer Access with Incorrect Length Value

CWE-822 Untrusted Pointer Dereference

CWE-823 Use of Out-of-range Pointer Offset

CWE-824 Access of Uninitialized Pointer

CWE-825 Expired Pointer Dereference
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Relevant CWEs with specific types

CWE-120: Classic Buffer Overflow: copy without checking the size of the input

CWE-121: Stack-based Buffer Overflow: overwrite over data in the Stack Segment

CWE-122: Heap-based Buffer Overflow: overwrite over data in the Heap Segment

CWE-123: Write-what-where Condition: ability to write to any memory of choice

CWE-124: Buffer Underwrite ('Buffer Underflow’): Write to memory before the buffer

CWE-126: Buffer Over-read: Read after the buffer ends (e.g., using an index)

CWE-127: Buffer Under-read: Read before the buffer start (e.g., using an index)
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Popularity at NVD
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Popularity decline

➢Better tools to check for the vulnerability
▪Static/Dynamic Code analysis

➢Dissemination of bound checking mechanisms in compilers
▪Standard in most distributions and enabled by default

▪Still lacking in embedded devices

➢ Increasingly higher adoption of higher layer languages
▪Extensive use and Open Sources libraries improves security

▪Security focused languages such as Rust
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Potentially Vulnerable Software

➢Any software that gets information from external sources
▪Sockets, PIPEs and other IPC

▪Files

▪Program arguments

▪Environment Variables

➢Software developed in languages with direct memory access
▪Mostly C and C++ (or at least with most devastating impact)

▪But also: Go when using “unsafe”, PHP, Python, Java, etc…
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Dominant prevalence

➢Anything that was made in a language with access to memory
▪Server software packages (nginx, apache, mysql, …)

➢Embedded and IoT devices
▪Due to lack of compiler support

▪Due to lack of hardware capabilities
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… in python

# bo_1.py

message = "Hello World"

buffer = [None] * 10

print(message)

for i in range(15):

buffer[i] = 'A'

print(message)

$ python3 bo_1.py

Hello World

Traceback (most recent call last):

File "bo_1.py", line 7, in <module>

buffer[i] = 'A'

IndexError: list assignment index out of 
range
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… in C

#include <stdio.h>

void main(int argc, char* argv[]){

char message[] = "Hello World";

int buffer[5];

int i;

printf("%s\n", message);

for(i = 0;i < 15; i++) {

buffer[i] = 'A';

}

printf("%s\n", message);

}

./bo_1

Hello World

AAAAAAAAAAAAAAAd AAAAAAAAAAd



João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

Vulnerabilities in languages (mostly C/C++)

➢ Not memory safe: programmers can read/write memory freely and are not constrained by the address 
or size of the variables

▪ Great flexibility, but huge risk as mistakes lead to accessing memory that otherwise should not be accessed

▪ C/C++ compilers have freedom to optimize code and even sometimes undefined behavior

➢ Memory safe languages intercept such errors, raising errors
▪ Program will crash (DoS), but impact is limited

// Correct usage
printf("%d\n", *value);

// Reading memory after the variable
printf("%d\n", *(value + 4));

// Reading memory before the variable
printf("%d\n", *(value - 4));
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Vulnerabilities in languages (mostly C/C++)

➢ Not memory safe: programmers can read/write memory freely and are not constrained by the address 
or size of the variables

▪ Great flexibility, but huge risk as mistakes lead to accessing memory that otherwise should not be accessed

▪ C/C++ compilers have freedom to optimize code and even sometimes undefined behavior

➢ Memory safe languages intercept such errors, raising errors
▪ Program will crash (DoS), but impact is limited

// Correct usage
printf("%d\n", *value);

// Reading memory after the variable
printf("%d\n", *(value + 4));

// Reading memory before the variable
printf("%d\n", *(value - 4));

$ ./not_memory_safe
42
0
32767
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Vulnerabilities in languages (mostly C/C++)

➢ Not type safe: memory content can be reinterpreted as required by the programmer
▪ Casts may be arbitrarily allowed and not checked

➢ Type safe languages do not allow reinterpretation, or only safe reintrepertation
▪ Cast a byte to int is safe, a buffer to int is not.

int value = 42;

// Correct usage
printf("%d\n", value);

// Cast to variable with different storage
printf("%f\n", *((double*) &value));

// Cast to variable with different size
printf("%llu\n", *((unsigned long long*) &value));
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Vulnerabilities in languages (mostly C/C++)

➢ Not type safe: memory content can be reinterpreted as required by the programmer
▪ Casts may be arbitrarily allowed and not checked

➢ Type safe languages do not allow reinterpretation, or only safe reinterpretation
▪ Cast a byte to int is safe, a buffer to int is not.

int value = 42;

// Correct usage
printf("%d\n", value);

// Cast to variable with different storage
printf("%f\n", *((double*) &value));

// Cast to variable with different size
printf("%llu\n", *((unsigned long long*) &value));

$ ./not_type_safe
42
0.000000
1170988679674462250



João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

Vulnerabilities in languages (mostly C/C++)

➢ Dynamically allocated memory has no implicit management mechanism
▪Programmer must allocate and deallocate all memory

▪Programmer must know how memory was allocated

▪Programmer must free memory only after there is no other reference

char* buffer = (char*) malloc(10);
char* str = buffer;

free(buffer);

// Write after free (and write beyond buffer)
memcpy(str, "Hello World!!!!", 15);
// Read after free (and read beyond buffer)
printf("%s\n", str);

$ ./dynamic_memory
Hello World!!!!
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Why? Memory Structure 101

➢ Kernel organizes memory in pages
▪Typically 4096 bytes

➢ Processes operate in a Virtual Memory Space
▪Mapped to real pages, which can be in RAM or Swapped

➢ Kernel splits program in several segments
▪ Increases security
▪ segment based permissions

▪ Increases performance
▪ some are dynamic: invalidated when program terminates
▪ some are static: can be retained, speed repeated startup
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Memory Structure

➢ SS: Local variables and execution flow

➢ Shared Libraries: .so/dlls loaded. 
▪ Addresses are shared between programs

➢ Heap: memory allocated with malloc/new

➢ BSS: Global Variables

➢ Data: Constants

➢ Code: Actual instructions

Stack
grows top->bottom

…

Shared Libraries

Heap
grows bottom->top

malloc(sizeof(int))

BSS
Unitialized global variables (char a[5])

Data
Constant variables (const int i = 0)

Code
Program Code

…

Data Segment (DS)

Code Segment (CS)

Stack Segment (SS)

0xfffffff

0x00000000

…
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mem.c (available in course web page)

➢Simple program showing the memory map of itself

➢Features:
▪Prints the address of objects of different types
▪ Argument

▪ Dynamic memory with malloc

▪ Global Variable

▪ Constant

▪ Function

▪Prints the memory maps as exposed in /proc/self/maps
▪Creates a recursive function and prints the address of local variables
▪Crashes with a Stack Overflow
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mem.c

Internal Variables (Page = 4096)

&argc = bfeb8590 -> stack = bfeb8000

malloc = 08435008 -> heap  = 08435000

bssvar = 0804a034 -> bss = 0804a000

cntvar = 08048920 -> const = 08048000

&main  = 0804865c -> text  = 08048000

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000
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mem.c

Content of /proc/self/maps

08048000-08049000 r-xp 00000000 08:01 26845750   /home/s/mem

08049000-0804a000 r--p 00000000 08:01 26845750   /home/s/mem

0804a000-0804b000 rw-p 00001000 08:01 26845750   /home/s/mem

08435000-08456000 rw-p 00000000 00:00 0          [heap]

b7616000-b7617000 rw-p 00000000 00:00 0

b7617000-b776a000 r-xp 00000000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776a000-b776b000 ---p 00153000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776b000-b776d000 r--p 00153000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776d000-b776e000 rw-p 00155000 08:01 1574823    /lib/tls/i686/cmov/libc-2.11.1.so

b776e000-b7771000 rw-p 00000000 00:00 0

b777e000-b7782000 rw-p 00000000 00:00 0

b7782000-b7783000 r-xp 00000000 00:00 0          [vdso]

b7783000-b779e000 r-xp 00000000 08:01 1565567    /lib/ld-2.11.1.so

b779e000-b779f000 r--p 0001a000 08:01 1565567    /lib/ld-2.11.1.so

b779f000-b77a0000 rw-p 0001b000 08:01 1565567    /lib/ld-2.11.1.so

bfe99000-bfeba000 rw-p 00000000 00:00 0          [stack]

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000
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mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows downwards
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Stack organization

➢ Stack is organized by frames, one for each 
function call
▪ Memory reserved for the function to use as it requires

➢ Each stack frame stores:
▪ Return Information

▪ Local Variables

▪ Arguments to following functions (x32: all, x64: +5th)

void main(){
foo();

}

void foo(){
bar();

}
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Stack organization

➢ Stack is organized by frames, one for each 
function call
▪ Memory reserved for the function to use as it requires

➢ Each stack frame stores:
▪ Return Information

▪ Local Variables

▪ Arguments to following functions
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Stack organization

➢ Return information has 2 major objectives
▪ Chaining frames as new functions are called

▪ Return to the next instruction after the function ends

➢ Frame chaining
▪ When a function is called, the address of the current stack 

frame (Register RBP in x64) is push to the frame

▪ When the function ends, RBP is popped
▪ Caller function has it’s frame restored

➢ Function chaining
▪ When a function is called, the address of the next instruction 

is push to the stack (RIP register)

▪ When a function ends, that address is popped
▪ Execution resumes at the caller function

RIP

RBP

RIP

RBP
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mem_local.c (available in course web page)

➢ Prints the address to several variables
▪ Local variables declared in the main function

▪ Arguments passed to the foo function

▪ Local variables in the foo function

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a      : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b
buffer : 0x7fffd6baeda0
local_b: 0x7fffd6baed9c
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mem_local.c – Conclusions

➢ Stack frame grows from higher addresses to 
lower addresses
▪ Main has variables at 0xbaedb.

▪ Foo has variables at 0xbaed6-8.

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a      : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b
buffer : 0x7fffd6baeda0
local_b: 0x7fffd6baed9c
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mem_local.c – Conclusions

➢ Declaration order doesn’t matter!

➢ Compiler will place variables are he seems adequate
▪ Will keep  information aligned

▪ May create empty spaces 

▪ May deploy additional protection mechanisms (canaries)

char foo(int a,){
char local_a = 3;
char buffer[16];
int local_b = 5;

printf(“%p\n”, &a);
printf(“%p\n”, &local_a);
printf(“%p\n”, &buffer);
printf(“%p\n”, &local_b);

buffer[0] = local_a;
return buffer[0];

}

int main(int argc, char* argv[]){
printf(“%p\n”, &argc);
printf(“%p\n”, argv);

return foo(argc);
}

main
argc : 0x7fffd6baeddc
argv : 0x7fffd6baeed8

foo
a      : 0x7fffd6baed8c
local_a: 0x7fffd6baed9b  (3rd)
buffer : 0x7fffd6baeda0  (1st)
local_b: 0x7fffd6baed9c  (2nd)
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mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows downwards

Q: How much can it grow?
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mem.c

Stack evolution:
foo [000]: &argc = bfeb8140 -> stack = bfeb8000
foo [001]: &argc = bfdb8110 -> stack = bfdb8000
foo [002]: &argc = bfcb80e0 -> stack = bfcb8000
foo [003]: &argc = bfbb80b0 -> stack = bfbb8000
foo [004]: &argc = bfab8080 -> stack = bfab8000
foo [005]: &argc = bf9b8050 -> stack = bf9b8000
foo [006]: &argc = bf8b8020 -> stack = bf8b8000
foo [007]: &argc = bf7b7ff0 -> stack = bf7b7000
foo [008]: &argc = bf6b7fc0 -> stack = bf6b7000
Segmentation fault

Stack

Libraries

Heap

BSS

Data

Code

0xFFFFFFFF
Top of memory

Start of Memory
0x00000000

Stack grows 
downwards1. Until a limit imposed by the SO is reached. Ex:

- glibc i386, x86_64    7.4 MB
- Tru64 5.1             5.2 MB
- Cygwin                1.8 MB
- Solaris 7..10           1 MB
- MacOS X 10.5          460 KB
- AIX 5                  98 KB
- OpenBSD 4.0            64 KB
- HP-UX 11               16 KB

2. Until vital memory is overwritten
- …mostly in embedded devices
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CWE-120 Classic Overflow

➢Given an input buffer, data is copied without checking its size
▪ If destination buffer is larger than input data, nothing bad happens
▪ If destination buffer is smaller than input data, memory is overwritten

➢ Impact: memory is overwritten
▪Mostly affects local variables
▪May change the execution flow
▪ Change of local control variables

▪ Change of stored Instruction Pointer

▪May be used to inject external code

➢Solution: take in consideration the size of the destination buffer!
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Classic Overflow – prog 1

➢ Description:
▪ Reads the username from the command line

▪ Input is stored in variable username

▪ Variable can hold strings up to 31 chars
▪ Why 31 and not 32?

▪ gets functions has no limit on input size

▪ printf will print the content

➢ Shows a simple write beyond boundaries
▪ printf also shows a read beyond boundaries

//classic/prog_1.c
//gcc –O0 –fno-stack-protector –o prog_1 prog_1.c

#include <stdio.h>

int main() {
char username[32];
puts("username:");
gets(username);
printf("Welcome %s!\n", username);
return 0;

}
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Classic Overflow – prog 1

➢ Reading more than 31 chars will result in 
overwriting the memory after the username

▪ There are no other variables, so this will be stack 
structures (addressed later)

➢ printf will print chars up to 0x00, 
potentially printing program memory

▪ Function is insecure as there are no explicit 
boundaries except the actual string content

//classic/prog_1.c
//gcc –O0 –fno-stack-protector –o prog_1 prog_1.c

#include <stdio.h>

int main() {
char username[32];
puts("username:");
gets(username);
printf("Welcome %s!\n", username);
return 0;

}
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Exercise: classic/prog 1

➢ Install gef: pip3 install --user gdb-gef

➢ Compile the binary: gcc -g -O0 -fno-stack-protector -o prog_1 prog_1.c

➢ Analyze the execution with different payloads
▪ Print register: p $rsp or variable address p &username

▪ Check stack information: info frame

➢ Determine
▪ What is the stack base address?

▪ Where is the return information?

▪ How many bytes can be entered without overflow?

▪ How many bytes can be written without damage?

▪ What happens when an overflow is achieved?
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➢ What is the stack base address?
▪ info frame:  0x7ffffffedf50
▪ p $rbp:  0x7ffffffedf40

➢ Where is the return information?
▪ Just before $rbp

➢ How many bytes can be entered without overflow?
▪ sizeof(username) - 1

➢ How many bytes can be written without damage?
▪ 32
▪ It could have been different due to empty space

➢ What happens when an overflow is achieved?
▪ Saved $BP is overwritten and then Saved $PC is overwritten
▪ In this case, 31 ‘a’ were provided and an additional \0 was added at .. edf38

Saved $BP
Saved $PC
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Classic Overflow – classic/prog_2

➢ Flow:
▪ Asks for username and password

▪ Validates credentials

▪ Asks for message

▪ If user authenticated, access is granted

➢ Issues:
▪ Several uncontrolled reads

▪ All variables may overwrite other

➢ Demonstrates overwrite of local variables
▪ Each vulnerable variable may overwrite others 

above

int main() {
char allowed = 0;
char password[8];
char username[8];
char message[32];

puts("username:");
gets(username);
puts("password:");
gets(password);
allowed = strcmp("admin", username) + \

strcmp("topsecrt", password);

puts("message:");
gets(message);

printf("user=%s pass=%s result=%d\n", username, \
password, allowed);

if(allowed == 0)
printf("Access granted. Message sent!\n");

else
printf("Access denied\n");

return 0;
}



João Paulo Barraca Assessment and Exploration of Vulnerabilities 38

Classic Overflow – classic/prog_2

➢ Variable order will determine how it can 
be exploited

▪ Implementation dependent

➢ message is the prime suspect as it is 
written after the evaluation is done

➢ Can also change an internal decision (flow 
inside the function) by writing over the 
allowed variable

int main() {
char allowed = 0;
char password[8];
char username[8];
char message[32];

puts("username:");
gets(username);
puts("password:");
gets(password);
allowed = strcmp("admin", username) + \

strcmp("topsecrt", password);

puts("message:");
gets(message);

printf("user=%s pass=%s result=%d\n", username, \
password, allowed);

if(allowed == 0)
printf("Access granted. Message sent!\n");

else
printf("Access denied\n");

return 0;
}
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Memory grows from top to bottom

message can be used to overwrite everything!!!

Classic Overflow – classic/prog_2
p &allowed

0x7ffffffedf2f 

p &username

0x7ffffffedf1f

p &password

0x7ffffffedf27

p &message

0x7ffffffedef0

message username password

allowed
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Exercise: classic/prog 2

➢ Compile the binary: gcc -g -O0 -fno-stack-protector –o prog_2 prog_2.c

➢ Analyze the execution with different payloads
▪ Print register: p $rsp or variable address p &username

▪ Check stack information: info frame

➢ Determine
▪ What is the stack base address?

▪ Where is the return information?

▪ How many bytes can be entered to the message without overflow?

▪ How many bytes can be written without damage?

▪ What happens when an overflow is achieved?

▪ How can the decision be subverted?
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CWE-126: Buffer Over-read

➢ The software reads from a buffer and reference memory locations after the 
targeted buffer.
▪ using buffer access mechanisms such as indexes or pointers

➢ Impact: Allows access to otherwise private data

➢ Most common with:
▪ Casts between structures with different sizes
▪ Copy of data without considering the actual size, assuming a general size
▪ Copy of data based on corrupted metadata
▪ Erasure of \0 in null terminated strings
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Buffer Over-read – overread1.c

➢ Program flow:
▪ Program reads a string without boundary checks

▪ Memory is manipulated

▪ A message is printed

➢ Demonstrates a read beyond bounds with 
printf

➢ Impact: private data (message) is 
disclosed to users

int main(int argc, char* argv[]){
char message[32];
char buffer[8];

printf("Password: ");
gets(buffer);

sprintf(message, "Secret message");

if(strcmp(buffer, "password") == 0) {
printf("%s\n", message);

}else{
printf("Password %s is incorrect\n", buffer);

}
}
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Buffer Over-read – overread1

➢Vulnerability:
▪ In some situations, the password may 

overflow the buffer, and further 
memory operations erase the \0 
character

▪Further printf of a message will 
include additional memory

int main(int argc, char* argv[]){
char message[32];
char buffer[8];

printf("Password: ");
gets(buffer);

sprintf(message, "Secret message");

if(strcmp(buffer, "password") == 0) {
printf("%s\n", message);

}else{
printf("Password %s is incorrect\n", buffer);

}
}
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Buffer Over-read – overread1

➢Exercise: Determine what conditions trigger the vulnerability, and 
what is the impact.

➢Write overflow

➢Memory manipulation erase end of string (\0)

➢Read overflow

password

password message

Message printed
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➢ Program Flow
▪ Receives a message to a buffer

▪ Prints the buffer

▪ Returns the buffer through the socket

➢ Vulnerability: 
▪ Send doesn’t respect buffer sizes and will use a buffer larger than expected

▪ printf has no notion of string size and will print everything up to \0

➢ Impact: existing memory contents will be sent to clients

Buffer Over-read – server.c

while(1){
n = recvfrom(sockfd, buffer, 32, NULL, &cliaddr, &len);
printf("%s\n", buffer);
sendto(sockfd, buffer, MESSAGE_SIZE, NULL, &cliaddr, len);

}
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Buffer Over-read – server.c

➢Exercise: Determine what conditions trigger the vulnerability, and 
what is the impact.

➢Variable structure:

Buffer Received

Buffer Sent

Buffer printer
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Stack Overflow
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Stack Based Vulnerabilities

➢Stack can be subverted to conduct attacks
▪ it contains local variables (which store user injected data)

▪the program execution flow is kept in the stack

➢Mostly:
▪Denial of Service: program crashes

▪Memory disclosure: attacker gains access to previous frames

▪Change program flow

▪ Injection of malicious code

RIP

RBP

RIP

RBP
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Stack Based Vulnerabilities

➢Recap…

➢Local variables will overwrite others
▪Can change data stored

▪Can lead to local memory disclosure

▪Can change local decisions if they depend of stored data

RIP

RBP

RIP

RBP
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Stack Based Vulnerabilities

➢Recap…

➢Local variables will overwrite others
▪Can change data stored

▪Can lead to local memory disclosure

▪Can change local decisions if they depend of stored data

➢Further writing will overwrite flow information
▪ If done blindly, program will crash (why?)

➢ It affects frames from previous functions

RIP

RBP

RIP

RBP
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Stack Smashing

➢ What about writing the correct values to the stack?
▪ Some value to RBP
▪ An address belonging to the process in RIP

➢ Well… when the message ends the flow will be restored
▪ That is… stored RBP and stored RIP are loaded into the registers
▪ The stack frame will start at RBP
▪ Program jump to the address in RIP

➢ If the addresses aren’t in a mapped area, program will receive 
a SIGSEV

RIP

RBP



João Paulo Barraca Assessment and Exploration of Vulnerabilities 52

Stack: program_flow.c

➢ Program flow:
▪Reads data from file

▪Calls foo function with size and buffer

▪foo has an overflowing memcpy

▪secret function is never called

➢ Attack: Overflow the buffer 
▪ writing over stored $RBP

▪ writing over stored $RIP, placing &secret there

➢ Consider ASLR to be disabled

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}
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Stack: program_flow.c

➢Main stack

➢Foo stack
▪ Stored program flow

▪buffer[8]

➢ Secret has no stack!

RIP

RBP

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}
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Stack: program_flow.c

➢Attack strategy
▪Overwrite buffer over RBP/RIP

➢ How to find the addresses?
▪ If we have the source code: 
printf(“%p\n”, secret);

▪ If we don’t: gdb or bruteforce

RIP

RBP

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}
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Stack: program_flow.c

$ ./program_flow payload

0x8001209

$ gdb program_flow payload

gdb$ br main

gdb$ run

gdb$ print &secret

gdb$ 5 = (void (*)()) 0x8001209
<secret>

Value to inject
program vs gdb

may yield different 
values!

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}
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Stack Smashing – program_flow.c
void secret(){

printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

➢Typical flow

Local variables RBP RIP
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void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

Stack: program_flow.c

➢Flow subverted to secret()

RBP RIPLocal variables
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Stack: program_flow.c

$ program_flow payload

0x8001209

Secret message

With the correct 
payload, secret() is 

called

void secret(){
printf("Secret message\n");
exit(0);

}
char foo(int size, char* arg){

char buffer[8];
memcpy(buffer, arg, size);
return buffer[0];

}
int main(int argc, char* argv[]){

char buffer[64];
printf("%p\n", &secret);

FILE *fp = fopen(argv[1], "r");
int size = fread(buffer, 1, 64, fp);
fclose(fp);

foo(size, buffer);
return 0;

}

Q: What payload?
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Stack: return_to_libc.c Stack

Libraries

Heap

BSS

Data

Code

➢ Instead of returning to a program function it is 
possible to jump to other locations
▪ In theory, any segment allocated to the program
▪ In practice, permission mechanisms limit the available 

segments

➢Segments for libraries have several generic libraries
▪ In particular: system()
▪ Is mostly executable

➢Stack can be executable
▪but it isn’t on recent systems
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Stack: return_to_libc.c

➢Typical Flow

➢Return to libc
▪Build “fake” Stack frame and call system() with one argument
▪ Argument is the command to execute (e.g. a reverse shell)

▪Must take in consideration calling convention
▪ Which is architecture dependent

Local variables RBP RIP main Function args Local variables RBP RIP libc
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Local variables

Stack: return_to_libc.c (32bits)

➢Arguments are passed in the stack
▪Approach: store values to the stack so that system is called with a payload
▪ Then call system

buffer RBP
RIP 

system
Payload: /bin/sh\0 RBP RIP libc

Return from 
System

System() in Libraries

pointer to 
payload
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Countermeasures: Data Executable Prevention

➢Non Executable Stack (NX) (Data Executable Prevention)
▪Most binaries do not allow running code from Stack

▪Stack segments are marked as Non Executable (NX bit)
▪ code cannot jump to it

▪ Return to lib-c attack not possible

➢ Introduced in recent OS, but can be disabled
▪Not ubiquitous on embedded devices

▪Binaries must opt-in!
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Countermeasures: Canaries

➢Uses references values after local variables to detect overflow
▪Value is placed when the function starts

▪Value is compared before function exits

▪Program is interrupted if values do not match

➢Stack canaries:

Local variables RBP RIP main Function argsCanaries
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Countermeasures: Canaries
Without Canaries

push    rbp
mov     rbp, rsp
sub     rsp, 16
lea     rax, -10[rbp]
mov     rsi, rax
lea     rdi, .LC0[rip]
mov     eax, 0
call    __isoc99_scanf@PLT
lea     rax, -10[rbp]
mov     rdi, rax
call    puts@PLT
nop
leave
ret

With Canaries

push    rbp
mov     rbp, rsp
sub     rsp, 32
mov     rax, QWORD PTR fs:40
mov     QWORD PTR -8[rbp], rax
xor eax, eax
lea     rax, -18[rbp]
mov     rsi, rax
lea     rdi, .LC0[rip]
mov     eax, 0
call    __isoc99_scanf@PLT
lea     rax, -18[rbp]
mov     rdi, rax
call    puts@PLT
nop
mov     rax, QWORD PTR -8[rbp]
xor rax, QWORD PTR fs:40
je      .L2
call    __stack_chk_fail@PLT

L2:
leave
ret

Gets value from fs:40
Stores value at rbp-8 (inside 

stack frame)

Fetches value
Xor with reference at fs:40

Exit or crash
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Countermeasures: Canaries

➢ -fno-stack-protector: disables stack protection. (What we have been using)

➢ -fstack-protector: enables stack protection for vulnerable functions that contain:
▪ A character array larger than 8 bytes.
▪ An 8-bit integer array larger than 8 bytes.
▪ A call to alloca() with either a variable size or a constant size bigger than 8 bytes.

➢ -fstack-protector-strong: enables stack protection for vulnerable functions that 
contain:

▪ An array of any size and type.
▪ A call to alloca().
▪ A local variable that has its address taken.

➢ -fstack-protector-all: adds stack protection to all functions regardless of their 
vulnerability.
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Stack: return_to_libc.c (x86_64)

➢x64: first arguments are passed in register: RDI, RSI, RDX, RCX
▪Approach: load RDI with address of string, jump to system address

▪Problems: cannot jump to stack (due to NX)

➢ Improved: 
▪Search any code that loads RDI from stack 
▪ we can control what is in the stack but we cannot execute code from it

▪ jump to code that loads RDI from stack

▪Jump to system
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ROP

➢ Return Oriented Programming: Execute code already present in the program.
▪ Each snippet is composed by some instructions + RET

▪ RET pops RIP from the stack

➢ Program flow is controlled by values in the stack
▪ Attacker puts values in stack pointing to gadgets

▪ When a gadget ends, the code jumps to the next gadget

➢ Any program can be constructed as long as there are gadgets available
▪ When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC [1] - Buchanan, E.; 

Roemer, R.; Shacham, H.; Savage, S. 

▪ Return-Oriented Programming: Exploits Without Code Injection [2] - Shacham, Hovav; Buchanan, Erik; 
Roemer, Ryan; Savage, Stefan.
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ROP

➢ROP Attacks: Chain gadgets to execute malicious code.

➢A gadget is a suite of instructions which end by the branch 
instruction ret (Intel) or the equivalent on ARM.

Intel examples:
pop eax ; ret
xor ebx, ebx ; ret

➢Objective: Use gadgets instead of classical shellcode

ARM examples:
pop {r4, pc}
str r1, [r0] ; bx lr
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ROP

➢Because x86 instructions aren't aligned, a gadget can contain 
another gadget.

➢Doesn't work on RISC architectures like ARM, MIPS, SPARC...

f7c7070000000f9545c3 → test edi, 0x7 ; setnz byte ptr [rbp-0x3d] ; 
c7070000000f9545c3 → mov dword ptr [rdi], 0xf000000 ; xchg ebp, eax ; ret 
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ROP

➢ Using ROP, stack is subverted to create a 
jump sequence. It contains:
▪ Values to be loaded

▪ Addresses to other gadgets

▪ May also contain arguments to functions called

➢ Gadgets are present in program code and 
loaded libraries
▪ Each function available provides one gadget

▪ Plus misaligned access

➢ Why?
▪ It can bypass several security mechanisms
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Stack: return_to_libc.c (x86_64)

➢ Payload strategy:
▪All addresses are 8 bytes
▪Buffer: padding with 16 bytes (buffer + RBP)
▪Gadget address: ?? -> rop --search “pop rdi; ret”  
▪ pop RDI: load command address into RDI

▪ ret: load system address into RIP

▪Command address: ?? -> grep /bin/sh
▪ Approaches: Find a string already in RAM (better); add the payload after the system address (if required)

▪ System address: ?? -> print system

buffer RBP
Gadget 
address

Local variables RBP RIP libc
Command 

address
System 
address

Command to be 
executed (optional)
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Stack: return_to_libc.c (x86_64)

➢ Payload strategy:
▪All addresses are 8 bytes
▪Buffer: padding with 16 bytes (buffer + RBP)
▪Gadget address: 0x00401383
▪ pop RDI: load command address into RDI

▪ ret: load system address into RIP

▪Command address: 0x7fffff7575aa
▪ Approaches: Find a string already in RAM (better); add the payload after the system address (if required)

▪ System address:  0x7fffff5f5410

buffer RBP
Gadget 
address

Local variables RBP RIP libc
Command 

address
System 
address

Command to be 
executed (optional)
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Stack: return_to_libc.c (x86_64)

➢ In some systems, stack must be aligned to 16 bytes and our ROP 
chain isn’t…
▪Result is a crash in instruction movaps

➢Solution: add another gadget with only a ret (will pop a value)
▪Gadget 1: 0x00401384 ; ret

▪Gadget 2: 0x00401383 ; pop rdi;ret

buffer RBP
Gadget2 
address

RBP RIP libc
Command 

address
System 
address

Command to be 
executed (optional)

Gadget1 
address
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Stack: return_to_libc.c (x86_64)

➢Exercise: build a ROP chain and get a shell in the program
▪ It may be useful to disable ASLR for now
▪ In gef: aslr off

▪ System wide (as root): echo 0 > /proc/sys/kernel/randomize_va_space

▪Document the payload

➢Exercise: build a ROP chain to start a remote shell
▪Document the payload and the differences from the previous
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ROP Variants

➢ JOP: Jump Oriented Programming
▪https://www.comp.nus.edu.sg/~liangzk/papers/asiaccs11.pdf 

➢SOP: Jump Oriented Programming
▪https://www.lst.inf.ethz.ch/research/publications/PPREW_2013/PPREW_2013.p

df 

➢BROP: Blind Return Oriented Programming
▪http://www.scs.stanford.edu/brop/bittau-brop.pdf 
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Jump Oriented Programming

➢ Explores small gadgets that end with an indirect JMP with a dispatcher
▪ Indirect jmp: jmp [register]

▪ Is assumed to be more complex to detect and avoid as interaction is restricted to code and registers

▪ Although number of JMP gadgets is smaller, unaligned execution create jumps not previously present in 
the code

▪ The program counter is any register

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh , Zhenkai Liang  “Jump-Oriented Programming: A New Class of Code-Reuse Attack”, 2011
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Jump Oriented Programming

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh , Zhenkai Liang  “Jump-Oriented Programming: A New Class of Code-Reuse Attack”, 2011
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String Oriented Programming

➢ Makes use of a String format bug
▪ Present in the printf family of functions (printf, vprintf, fprintf)
▪ Correct: printf(“%s”, str);
▪ Vulnerable: printf(str);

➢ Format string attacks read/write arbitrary values to arbitrary memory locations
▪ Explore %p, %n, %s, 
▪ Can be used to trigger ROP, JOP attacks by writing values memory
▪ Instead of writing sequential chunks, SOP can issue arbitrary writes.

➢ Two approaches
▪ Direct control flow redirect: Erase return value on stack, jumping to gadget on function end
▪ Indirect control flow redirect: Erase a Global Offset Table entry
▪ GOT keeps addresses to external symbols as resolved by the linker

Mathias Payer, Thomas R. Gross, String oriented programming: when ASLR is not enough”, Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering, 2013
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Blind Return Oriented Programming

➢Makes it possible to write exploits without possessing the target's 
binary. 
▪ It requires a stack overflow and a service that restarts after a crash.
▪Based on whether a service crashes 
▪ Is able to construct a full remote exploit that leads to a shell. 

➢ The attack remotely leaks gadgets to perform the write system call, 
after which the binary is transferred from memory to the attacker's 
socket.
▪ Following that, a standard ROP attack can be carried out. 
▪Apart from attacking proprietary services, BROP is very useful in targeting open-source 

software for which the particular binary used is not public

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, D. Boneh: Hacking Blind. In Oakland 2014.
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Blind Return Oriented Programming

➢Makes it possible to write exploits without possessing the target's 
binary. 
▪ It requires a stack overflow and a service that restarts after a crash.
▪Based on whether a service crashes 
▪ Is able to construct a full remote exploit that leads to a shell. 

➢ The attack remotely leaks gadgets to perform the write system call, 
after which the binary is transferred from memory to the attacker's 
socket.
▪ Following that, a standard ROP attack can be carried out. 
▪Apart from attacking proprietary services, BROP is very useful in targeting open-source 

software for which the particular binary used is not public

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, D. Boneh: Hacking Blind. In Oakland 2014.
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Blind Return Oriented Programming

➢ Looks for specific ROP Gadgets until a specific combination is found
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Blind Return Oriented Programming

➢ The BROP attack has the following phases:

1. Stack reading: read the stack to leak canaries and a return address to defeat 
ASLR.
Method: overflows varying the last byte. Byte found if app doesn’t crash
512-640 requests required

2. Blind ROP: find enough gadgets to invoke write and control its arguments. 
Method: find a Gadget1 that stops the service. Then brute force other gadgets together with 
this. 
Implement a clever method to identify different gadgets

3. Build the exploit: dump enough of the binary to find enough gadgets to 
build a shellcode, and launch the final exploit.
Obtain access to the write call so that the binary can be dumped
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Heap Overflow
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Heap Overflow

➢ Heap is used to store dynamically allocated variables
▪ Allocation: malloc, calloc and new (C++), release: free or delete (C++)

➢ Call reserves a chunk and returns a pointer to the buffer
▪ buffer: (8 + (n / 8)*8 bytes)
▪ If chunk is free data will have

▪ Forward Pointer (4 bytes), pointer to next free chunk

▪ Backwards Pointer (4 bytes), pointer to previous free chunk

▪ Headers used for housekeeping
▪ Previous Chunk Size (previous chunk is free), 4 bytes

▪ Chunk Size + flags, 4 bytes

▪ Flags
▪ 0x01 PREV_INUSE – set when previous chunk is in use 

▪ 0x02 IS_MMAPPED – set if chunk was obtained with mmap() 

▪ 0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena 

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer
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Heap Overflow: overflow.c

➢ Overflow/underflow will write/read over control structures and 
then data
▪ Control structures are implementation specific

▪ As well as reuse and actual buffer location

int main(int argc, char **argv) {
char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
memset(buf1, 0, BUFSIZE); //Clear data
memset(buf2, 0, BUFSIZE);

printf("Buf2: %s\n", buf2); //Should print “Buf2: “
strcpy(buf1, argv[1]);
printf("Buf2: %s\n", buf2); //Should print “Buf2: “

}

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer
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Heap Overflow: dangling.c

➢ Dangling references can give access to memory
▪ Both for read and write purposes

➢ Access to buf1 should be denied: it isn’t

➢ Access to buf1 should not give access to other ranges: it gives to buf2

char *buf1 = (char *) malloc(BUFSIZE*100); //Allocate buffer
memset(buf1, 'U', BUFSIZE);  //Fill it with 0x55
free(buf1); //Free the memory

char *buf2 = (char *) malloc(BUFSIZE); //Allocate new buffer
memset(buf2, 'A', BUFSIZE);  //Fill it with 0x41

printf("%s\n", buf1); //buf1 was freed

prev size

size

buffer

prev size

size

buffer

prev size

size

buffer
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Heap Overflow: fastbin.c

➢Glibc has lists of recently freed blocks
▪Each list (bin) stores chunks with a specific size 

▪Blocks are reused in future allocations if size is compatible
▪ Great for performance as the memory is already reserved

▪ Horrible for security as dangling pointers will give a view to memory areas

➢Bins are also used to detect double free
▪We cannot free a chunk that rests at the top of the bin

▪Which is great for security as a double free could corrupt the linked list
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Heap Overflow: fastbin.c

➢ Fast Bin attack explores Bins to get a pointer to an already allocated area
▪ Result is program will have two pointers to the same memory
▪ Especially useful if memory stores dynamic objects with function, as function pointers can be overwritten

▪ The first pointer is legitimate
▪ The second is a shadow pointer

➢ Attack strategy
▪ Allocate at least three buffers (a, b, c) with the same size
▪ To use same bin

▪ free(a), then free(b), then free(a) again
▪ Double freeing a will ensure that the fast bin will have duplicated entries (a)
▪ Bin will have three pointers ready to use: a b a

▪ Allocate three buffers again with the same size.
▪ Result is a legitimate pointer, another legitimate pointer, and a shadow pointer
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Heap Overflow: fastbin.c

➢ Impact: attacker can gain access to 
memory region
▪ If victim has chunk a with data and leaks

▪Attacker can fill free list and allocate again

// Allocating 3 buffers
int *a = calloc(1, 8);
int *b = calloc(1, 8);
int *c = calloc(1, 8);

free(a);
free(b);
free(a); //AGAIN!

//Free list now has: a b a

int *d = calloc(1, 8);
int *e = calloc(1, 8);
int *f = calloc(1, 8);

// d will be equal to f
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Heap Overflow: overflow.c

➢ Exercise: Observe and document the behavior in both programs
▪dangling.c and overflow.c

▪Use GDB to analyse the addresses

▪What is the impact of writing to a freed pointer?
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Countermeasures: ASLR

➢Address Space Layout Randomization (ASLR)
▪Address are dynamic across process execution
▪ Different architectures and configurations apply randomization to different segments

▪ Only Stack is randomized, all segments are randomized

▪Not trivial to predict the address to issue a jump or change memory

➢echo $n > /proc/sys/kernel/randomize_va_space
▪0 = No randomization

▪1 = Conservative Randomization: Stack, Heap, Shared Libs

▪2 = Full Randomization: 1 + memory managed via brk())
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Effects of ASLR (WSL1 on Windows 10)

➢ randomize_va_space =2

main: 0x7f80def82189, argc: 0x7fffbfce569c, local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0, libc: 0x7f80ded85410
main: 0x7fb811d47189, argc: 0x7fffdbd2928c, local: 0x7fffdbd2929c, heap: 0x7fffd47952a0, libc: 0x7fb811b55410
main: 0x7f95178f0189, argc: 0x7fffee962b7c, local: 0x7fffee962b8c, heap: 0x7fffe67082a0, libc: 0x7f95176f5410

➢ randomize_va_space =1

main: 0x7f1672f77189, argc: 0x7fffe5835f0c, local: 0x7fffe5835f1c, heap: 0x7f1672f7b2a0, libc: 0x7f1672d85410
main: 0x7f6f0aed0189, argc: 0x7fffd8eb4e9c, local: 0x7fffd8eb4eac, heap: 0x7f6f0aed42a0, libc: 0x7f6f0acd5410
main: 0x7f8106545189, argc: 0x7ffff8601bdc, local: 0x7ffff8601bec, heap: 0x7f81065492a0, libc: 0x7f8106355410

➢ randomize_va_space=0 

main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
main: 0x8001189, argc: 0x7ffffffee0ec, local: 0x7ffffffee0fc, heap: 0x80052a0, libc: 0x7fffff5f5410
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Coutermeasures: PIE

➢ Position Independent Executables
▪Executables compiled such that their base address does not matter, ‘position 

independent code’

➢ PIE fully enables ASLR as code can be placed dynamically
▪Must be enabled at compile time!!
▪ gcc –pie –fPIE

➢Breaking ASLR and PIE: Find a reference to some known function
▪Because while addresses change, the change keeps relative distance
▪e.g.: if we know printf is at 0xbf00332, we will know where is system.
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ASLR and relative offsets

main: 0x7f80def82189, argc: 0x7fffbfce569c
main: 0x7fb811d47189, argc: 0x7fffdbd2928c
main: 0x7f95178f0189, argc: 0x7fffee962b7c

local: 0x7fffbfce56ac, heap: 0x7fffb8c4b2a0
local: 0x7fffdbd2929c, heap: 0x7fffd47952a0
local: 0x7fffee962b8c, heap: 0x7fffe67082a0

libc: 0x7f80ded85410
libc: 0x7fb811b55410
libc: 0x7f95176f5410


