
João Paulo Barraca Assessment and Exploration of Vulnerabilities 1

OWASP A2
Broken Authentication
JOÃO PAULO BARRACA

João Paulo Barraca Assessment and Exploration of Vulnerabilities 2

OWASP A2 – Broken Authentication

➢Application functions related to authentication and session
management are often implemented incorrectly

➢Allow attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws

➢Attackers may assume other users’ identities temporarily or
permanently.

João Paulo Barraca Assessment and Exploration of Vulnerabilities 3

OWASP A2 – Broken Authentication

➢Prevalence is widespread
▪due to the operation of most identity and access controls.

➢Session management is the bedrock of authentication and access
controls
▪ present in all stateful applications

➢Attackers can detect broken authentication using manual means

➢Attackers can exploit them using automated tools
▪There are extensive password lists and dictionary attack tools

João Paulo Barraca Assessment and Exploration of Vulnerabilities 4

Changes in the OWASP ranking

➢ Services evolving from monolithic server applications to microservices
▪Proliferation of HTTP and REST to implement APIs

➢Applications are evolving to Progressing Web Applications
▪Single HTML page for entire application
▪Lots of Javascript based logic
▪Resources provided through REST APIs
▪Services exposed to the Internet, used directly by clients

➢ Impact
▪Logic is moving towards clients
▪State anchors are kept in the clients

João Paulo Barraca Assessment and Exploration of Vulnerabilities 5

HTTP Basics

João Paulo Barraca Assessment and Exploration of Vulnerabilities 6

The Web

Web Server

Database

Browser

Local Storage

Local storage contains user data
inside and outside the browser

Database frequently is on a
different host

João Paulo Barraca Assessment and Exploration of Vulnerabilities 7

The Web

Web Server

Database

Application

Browser

Local Storage

Frequently, the
web server
communicates
internally with
the application
server

João Paulo Barraca Assessment and Exploration of Vulnerabilities 8

The Web

Browser

Web Server

Database

Application

Web Firewall

Local Storage

Sometimes, a
Web Application
Firewall (WAF)
provides
additional
security controls

João Paulo Barraca Assessment and Exploration of Vulnerabilities 9

A Web Request

1. Browser asks DNS for the IP address of server.com

2. Browser connects to TCP port 80/443 of server.com

3. Browser sends a request with:
1. Action: GET, POST, PUT, DELETE
2. URL: http://server.com
3. Headers: language, compression, user-agent…

Web ServerBrowser
HTTP Request

User clicks on a link for
http://server.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 10

Multiple Web Request

➢HTTP is stateless by design

➢HTTP Requests are independent of each other
▪Each triggering an individual action

▪Usually tokens or cookies are included in requests/responses to keep state

Web ServerBrowser

HTTP Requests

João Paulo Barraca Assessment and Exploration of Vulnerabilities 11

HTTP and HTML

➢HTTP is not related with HTML
▪You can have HTTP without HTML, and vice versa

➢HTTP is a generic transport protocol
▪Usually operated over TCP on port 80 or 8080

➢HTML is a language used to define the structure of a web page

Web ServerBrowser

HTTP Requests

João Paulo Barraca Assessment and Exploration of Vulnerabilities 12

HTTP Communication

➢HTTP is a standard Client-Server protocol

1. Client establishes a TCP connection with the server on port 80

2. Client sends a HTTP request over that TCP connection

3. Server replies
▪Sends a response
▪HTTP 1.0: Closes the connection
▪HTTP 1.1/2: May keep it persistent for some time

➢ Server only issues replies to requests. It may never contact clients
directly

João Paulo Barraca Assessment and Exploration of Vulnerabilities 13

HTTP Communication

image: https://ruslanspivak.com/

João Paulo Barraca Assessment and Exploration of Vulnerabilities 14

HTTP Communication

➢Actually… servers can contact clients directly with WebSockets
▪Great for low latency asynchronous communications (e.g. VoIP, telemetry)
▪Nightmare for security!

➢ Client upgrades connection to
a WebSocket

➢Any participant can send message
▪No polling is required

Usually no log is done
▪Client and server must know the

message format

image: Microsoft.com

João Paulo Barraca Assessment and Exploration of Vulnerabilities 15

HTTP Request

$ curl https://elearning.ua.pt -D - -v

GET / HTTP/1.1

Host: elearning.ua.pt

User-Agent: curl/7.68.0

Accept: */*

HTTP Request

João Paulo Barraca Assessment and Exploration of Vulnerabilities 16

HTTP Response

$ curl https://elearning.ua.pt -D - -v

HTTP/1.1 200 OK

Date: Thu, 12 Nov 2020 17:01:16 GMT

Server: Apache

Set-Cookie: MoodleSession=qvnej3ar6u28ndar312jhg1veh; path=/

Expires: Mon, 20 Aug 1969 09:23:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Cache-Control: post-check=0, pre-check=0, no-transform

Last-Modified: Thu, 12 Nov 2020 17:01:16 GMT

Accept-Ranges: none

HTTP Response
With server timestamp
Cookie, Cache control

João Paulo Barraca Assessment and Exploration of Vulnerabilities 17

Anything can be a client

$ echo -ne 'GET / HTTP/1.1\r\nHost: elearning.ua.pt\r\nUser-Agent: Android

10\r\n\r\n' | ncat --ssl elearning.ua.pt 443

HTTP/1.1 200 OK

Date: Thu, 12 Nov 2020 17:20:12 GMT

Server: Apache

Set-Cookie: MoodleSession=ooma3far88iqh9nvssn598nsuu; path=/

Expires: Mon, 20 Aug 1969 09:23:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Cache-Control: post-check=0, pre-check=0, no-transform

Last-Modified: Thu, 12 Nov 2020 17:20:12 GMT

Accept-Ranges: none

João Paulo Barraca Assessment and Exploration of Vulnerabilities 18

Anything can be a client

➢ Many programs can communicate with HTTP servers
▪ A socket is all that is required

➢ Even Bash can do it

$ exec 5<>/dev/tcp/193.136.173.58/80
$ echo -e "GET / HTTP/1.1\r\nHost: www.ua.pt\r\n\r\n" >&5
$ cat <&5

HTTP/1.1 301 Moved Permanently
Server: nginx/1.18.0
Date: Thu, 12 Nov 2020 17:26:58 GMT
Content-Type: text/html
Content-Length: 169
Connection: keep-alive
Location: https://www.ua.pt/

Open TCP to 193.136.173.58:80 into FD5
Write to FD 5
Read from FD 5

João Paulo Barraca Assessment and Exploration of Vulnerabilities 19

Anything can be a client

➢ There is no client-side security model

➢All parts of a request can be crafted
▪HTTP Headers, Methods, URLs
▪POST content can be manipulated freely

➢ Control must reside in the server-side context
▪Remember that developers are pushing content to the client? ☺

➢ There are no input validation processes in the server
▪As long as the HTTP protocol is “generally” observed

João Paulo Barraca Assessment and Exploration of Vulnerabilities 20

Authentication

João Paulo Barraca Assessment and Exploration of Vulnerabilities 21

Authentication - Recap

➢Authentication aims to determine the identity of an entity
▪Entity may be user, system, software

➢The basic process relies in the verification of some property of the
authenticated entity by the authenticator
▪Something that he has

▪Something that he knows

▪Something that he is

João Paulo Barraca Assessment and Exploration of Vulnerabilities 22

Authentication - Recap

➢What else can be used?

João Paulo Barraca Assessment and Exploration of Vulnerabilities 23

Authentication - Recap

➢Somewhere where he is (location)

➢Someone that is close by (neighborhood)

➢Something that he has done (past behavior)

➢A combination of several
▪2FA – Two Factor Authentication (e.g. Secret + Cookie)

▪MFA – Multiple Factor Authentication (e.g. Secret + Cookie + Smartphone)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 24

Base HTTP methods

➢Makes use of the Authorization header
▪Header is passed to applications as well as user

▪May require password to be in clear text

▪Presents no configurable user interface

➢Basic authentication through direct presentation of credentials
▪Authorization: Basic base64(login:password)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 25

Base HTTP methods

➢Digest authentication
▪Server replies with the authentication arguments in the WWW-Authenticate
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

uri="/dir/index.html",

qop=auth,

nc=00000001,

cnonce="0a4f113b",

response="6629fae49393a05397450978507c4ef1",

opaque="5ccc069c403ebaf9f0171e9517f40e41"

João Paulo Barraca Assessment and Exploration of Vulnerabilities 26

Authentication Flow state

João Paulo Barraca Assessment and Exploration of Vulnerabilities 27

Sessions

➢HTTP is stateless and provides no way of keeping state
▪Besides WebSockets in HTML5

➢Most applications over HTTP need state for good purposes
▪User preferences
▪Navigation history
▪Authentication state

➢Some use it for less noble purposes, usually compromising privacy
▪Track users across multiple sites for advertising purposes
▪Profile user behavior

João Paulo Barraca Assessment and Exploration of Vulnerabilities 28

Flow State keeping mechanisms

➢ Referer header

➢ SESSION_ID, or SID or other custom headers

➢ Cookie

➢ JSON Web Token

João Paulo Barraca Assessment and Exploration of Vulnerabilities 29

Use of the URL

GET /internal/private.html?pass=secret&sid=234234 HTTP/1.1
Host: www.company.com

➢ Input encoded as part of the URL as Request Arguments

➢GET request is expected to have side effects
▪Arguments control language, authentication, authorization

João Paulo Barraca Assessment and Exploration of Vulnerabilities 30

Use of the URL

Should be avoided at all cost to transport state

➢ Arguments are visible in the browser
▪A use problem if your browser is visible: public presentation, remote lecture, over the

shoulder eavesdropping

➢ Arguments may be logged by the webserver
▪Enable compromise if logs are accessed by an attacker

➢ SEO is broken: different users will have a different URL for the same resource

➢ Cache may be impacted: unique URLs limit the use of caches

João Paulo Barraca Assessment and Exploration of Vulnerabilities 31

Use of a POST request

POST /doLogin HTTP/1.1
Host: company.com
Pragma: no-cache
Cache-Control: no-cache
User-Agent: Mozilla/5.0 (Windows 10)
Referer: http://company.com/login
Content-Length: 34

username=john&password=supersecret

➢URL visible on the browser: http://company.com/doLogin

João Paulo Barraca Assessment and Exploration of Vulnerabilities 32

GET vs POST

➢GET is used to REQUEST information
▪Can be resent by browsers
▪May be logged, cached, bookmarked, kept in the browser history
▪Should not change server-side state (no side-effects)
▪ Frequently it will change state, or create logs

➢POST is used to UPDATE information
▪Will not be cached, bookmarked, kept in browser history
▪May not be logged
▪Is not visible to users
▪Is expected to change server-side state (has side effects)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

Referer Header

➢ The Referer request header contains the address of the page making
the request.

➢ The Referer header allows servers to identify where people are visiting
them from
▪may use that data for analytics, logging, or optimized caching
▪Sometimes used for access control

➢ Fully user controllable

João Paulo Barraca Assessment and Exploration of Vulnerabilities 34

Referer Header

➢ First hit: No Referer

GET https://elearning.ua.pt/ HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Connection: keep-alive

Cookie: _ga_RWZB1HRVYE=GS1.1.1605202432.1.1.1605202861.0; _ga=GA1.1.857190253.1605202434;

_gid=GA1.2.1334581424.1605202436; _hjTLDTest=1; _hjid=25f0d0c2-0616-4e02-86b2-ba6a336f5a99;

_hjFirstSeen=1; _hjAbsoluteSessionInProgress=0

Upgrade-Insecure-Requests: 1

Host: elearning.ua.pt

João Paulo Barraca Assessment and Exploration of Vulnerabilities 35

Referer Header

➢ Subsequent request

GET https://elearning.ua.pt/theme/adaptable/style/print.css HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-US,en;q=0.5
Connection: keep-alive
Referer: https://elearning.ua.pt/
Cookie: _ga_RWZB1HRVYE=GS1.1.1605202432.1.1.1605202861.0; _ga=GA1.1.857190253.1605202434;
_gid=GA1.2.1334581424.1605202436; _hjTLDTest=1; _hjid=25f0d0c2-0616-4e02-86b2-ba6a336f5a99;
_hjFirstSeen=1; _hjAbsoluteSessionInProgress=0; MoodleSession=bcsqms7e7h324mmv1s46favccl
Host: elearning.ua.pt

João Paulo Barraca Assessment and Exploration of Vulnerabilities 36

Referer Header

GET /internal/private.html HTTP/1.1
Host: www.company.com
Referer: http://www.company.com/loggedin/

➢Expected meaning: User accessing /internal/private.html,
and came from /loggedin therefore it was authenticated

➢ In reality
▪Referer header MAY be set by the browser
▪Was meant for origin authentication, is used for authorization
▪Falls in the TOCTOU: Time-of-check time-of-use

João Paulo Barraca Assessment and Exploration of Vulnerabilities 37

SESSION ID

➢A value, set by the server in the HTML/Javascript
▪Kept manually by the HTML/JS logic

▪Browser is unaware of it

➢URLs in the HTML include the SESSION ID
resource

➢SESSION ID added to requests
▪Header or explicit argument in GET actions

▪Header or body in POST actions

João Paulo Barraca Assessment and Exploration of Vulnerabilities 38

Cookies (RFC 6265)

➢ASCII text created by the server and sent to the client
▪HTTP Header - Set-Cookie: VALUE

➢Stored in the clients’ cookie jar
▪A file or simple database

▪The client may freely delete (or edit) cookies

➢Client resends the Cookie header to servers
▪in every request made for which there is a compatible cookie

▪Format is: Cookie: VALUE

João Paulo Barraca Assessment and Exploration of Vulnerabilities 39

Cookies (RFC 6265)

➢ Server can keep context using the cookie provided
1. Receives a Cookie from the client

1. Cookie can contain the session identifier

2. Fetches context (session)
3. Provides a customized answer

➢ Cookies are used as a token enabling authorization
▪ When set as the result of an authentication process
▪ Allow obtaining the identity associated with the request

➢ Loosing a Cookie opens the door to impersonation

João Paulo Barraca Assessment and Exploration of Vulnerabilities 40

Cookies (RFC 6265)

➢ Cookie scope and lifetime are set by the server in the client response

Set-Cookie: <nome-cookie>=<valor-cookie>

Set-Cookie: <nome-cookie>=<valor-cookie>; Expires=<date>

Set-Cookie: <nome-cookie>=<valor-cookie>; Max-Age=<non-zero-digit>

Set-Cookie: <nome-cookie>=<valor-cookie>; Domain=<domain-value>

Set-Cookie: <nome-cookie>=<valor-cookie>; Path=<path-value>

Set-Cookie: <nome-cookie>=<valor-cookie>; Secure

Set-Cookie: <nome-cookie>=<valor-cookie>; HttpOnly

Set-Cookie: <nome-cookie>=<valor-cookie>; SameSite=Strict

Set-Cookie: <nome-cookie>=<valor-cookie>; SameSite=Lax

João Paulo Barraca Assessment and Exploration of Vulnerabilities 41

Cookies (RFC 6265)

➢Client -> Server
No cookie sent

➢Server -> Client

Set-Cookie: MoodleSession=0r6mroovg98o338clahfd177g0; path=/

➢Client -> Server

Cookie: MoodleSession=0r6mroovg98o338clahfd177g0

João Paulo Barraca Assessment and Exploration of Vulnerabilities 42

JWT - JSON Web Tokens

➢Concatenation of 3 texts
▪ base64(header) + '.' + base64(payload) + '.' + base64(signature)

▪signed with a HMAC or Asymmetric crypto (RSA)

header = { "alg" : "HS256", "typ" : "JWT" }

payload = {"loggedInAs" : "admin","iat" : 1422779638}

signature=HMAC-SHA256(secret,base64(header)+'.'+base64(payload))

João Paulo Barraca Assessment and Exploration of Vulnerabilities 43

JWT - JSON Web Tokens

➢ Provide mechanisms for token refresh, limiting impact due to a lost token

➢ Access Token – JWT Token that authorizes the user – very limited lifespan
▪ Is used in every request and has higher exposition

➢ Refresh Token – Random Token only to refresh Access Token
▪Only used to refresh the Access Token

▪ Longer lifetime

➢ After all tokens expire, the authentication process must be restarted

payload = {"loggedInAs" : "admin","iat" : 1422779638}

João Paulo Barraca Assessment and Exploration of Vulnerabilities 44

Exploitation and
Prevention

João Paulo Barraca Assessment and Exploration of Vulnerabilities 45

What makes an application vulnerable?

➢Credentials can be guessed or overwritten as a result of weak
account management functions
▪Default passwords, weak passwords (low entropy), predictable passwords

▪Broken account creation/recovery process

➢Allow brute-force or dictionary attacks (credential stuffing)
▪Test the entire key space by blind variation of characters

▪Test the entire key space by testing all

João Paulo Barraca Assessment and Exploration of Vulnerabilities 46

What makes an application vulnerable?

➢Credentials are stored in a vulnerable format
▪Clear text in a database, weak cipher mode, low PBKDF2 rounds

▪Attacker can conduct an offline attack
▪ Offline attacks are dangerous:

▪ The victim doesn’t know the resources of the attacker

▪ The attack is silent to the victim and can take days-years

➢Credentials are sent over unencrypted connections
▪Or authentication driven tokens (cookies)

➢Recovery or Multi-Factor is broken/missing

João Paulo Barraca Assessment and Exploration of Vulnerabilities 47

What applications should do

Avoid passwords as much as possible (CWE-309)

➢Passwords are prone to have low entropy, follow patterns
▪If passwords are required, force some entropy (CWE-521)

➢Users frequently reuse credentials among different services

➢Passwords must be stored in the server
▪May also be stored in the client

João Paulo Barraca Assessment and Exploration of Vulnerabilities 48

What applications should do

Use secure storage (CWE-257)

➢ Do not store passwords in clear, even if the domain is “secure”
▪E.g. database requires authentication to be accessed

➢ Add a computational/storage complexity transformation function (CWE 916)
▪PKBDF2 or scrypt
▪Use a reasonably high number of blocks/Rounds

➢ Direct access to storage may reveal secrets
▪Directly of through key brute force

João Paulo Barraca Assessment and Exploration of Vulnerabilities 49

What applications should do

Require rotation, but don’t require frequent rotation, except if
compromises are recorded (CWE-263)

➢ Rotation is important and will impose expiration on secrets (CWE-362)
▪ Stolen/discovered secrets will be rendered useless
▪ Doesn’t depend on users good practices (it’s imposed by system)

➢ Frequent rotation without proper tools will be rendered useless as
users will create “algorithms”
▪ 01MocKingBird2020, 02MocKingBird2020...
▪ Frequent expiration will impact usability and increase the security burden

João Paulo Barraca Assessment and Exploration of Vulnerabilities 50

What applications should do

Rate limit authentication functions (CWE-770)

➢ Password stuffing will be dramatically delayed
▪ Even a small delay of hundreds of milliseconds may be useful

➢ Monitoring authentication functions allow detecting attack
attempts (CWE-307)
▪ Blocking an account after repeated authn failures
▪ Password Spraying may circumvent methods (CAPEC-565)

João Paulo Barraca Assessment and Exploration of Vulnerabilities 51

What applications should do

Use Multi Factor Authentication (CWE-308)

➢ The attack required to obtain a credential, may not obtain a smartphone, or a
hardware token
▪ credential: eavesdropping or database
▪ Smartphone: remote compromise or physical steal
▪ Hardware token: physically steal the token

➢ If it is a usability issue, use progressive multi factors
▪ E.g.: Check <secret, cookie and IP network> and a fourth is something changes

➢ Favor multi-factor authentication in recovery processes

João Paulo Barraca Assessment and Exploration of Vulnerabilities 52

What applications should do

➢ For reference: NIST 800-63B: Authentication Assurance Levels

João Paulo Barraca Assessment and Exploration of Vulnerabilities 53

Token exploitation

➢ Client may freely manipulate tokens to trigger an attack
▪Break the authentication process, Enumerate users, Bypass authentication

➢ Cookies
▪ If contain sensitive information (passwords) – CWE-256
▪ If they have low entropy
▪ If they have a structure that is processed in the server

➢ JWT
▪ If server improperly verifies signature and allows the “none” method
▪ Verification method code must enforce the same method used in the signature creation

▪Short secret allows an attacker to forge tokens

João Paulo Barraca Assessment and Exploration of Vulnerabilities 54

Session Hijacking

➢Web applications use session ids, cookies and tokens as credentials
▪Stealing this credential will result in session hijacking

▪SESSION IDs and tokens reside in RAM

▪Cookies are stored, and present in backups

▪BAD: sometimes use IP Address as SID (CWE-291)

➢Multi-factor authentication may limit exploration
▪Cookie from different IP Address? Invalidate it

▪Cookie from different browser? Invalidate it

João Paulo Barraca Assessment and Exploration of Vulnerabilities 55

Session Hijacking – Sniffing/Interception

➢Sessions can be stolen from Cookie repository
▪If device is compromised

▪If they do not expire (CWE-613)

➢Browser can be led to provide the Cookie/Token to a malicious
server
▪Attacker listens for DNS request of http://company.com and provides the

address of the malicious server

▪MiTM attacks with non secure (no TLS) services

http://company.com/

João Paulo Barraca Assessment and Exploration of Vulnerabilities 56

Session Hijacking – Brute Force

➢ SIDs and Cookies must have high entropy (CWE-331)
▪Should result from a hash or UUID
▪Caveat: calculating a hash from a timestamp is a bad pattern (CWE-330)
▪ Timestamp is predictable

➢Otherwise attacker may brute force values of active sessions
▪Send multiple requests with varying SID/Cookies until access is granted

➢ Same can be done for username/passwords
▪Passwords are weak links
▪User enumeration will reduce the attack time (CWE-200)
▪Applicable to many CPEs

João Paulo Barraca Assessment and Exploration of Vulnerabilities 57

Session Fixation

➢SIDs from a non-authentication state must be invalidated before
authorizing a new session (CWE 384)
▪Alternative is to add a secondary Cookie with a random text

➢Attacker may force a predictable SID and wait for authentication
▪SID will be kept after authentication, granting access to the attacker
▪Hey Alice, check this https://server.com?SID=KNOWN_TO_ATTACKER

➢Detected by observing the Cookie/SID before and after authn

João Paulo Barraca Assessment and Exploration of Vulnerabilities 58

Session Fixation - Scenarios

➢ Freely controlled SID
▪Attacker says: Hey Alice, check this https://server.com?SID=KNOWN_TO_ATTACKER

▪ If Alice accesses the URL and logs on

▪The attacker can use the SID to impersonate Alice

Server

2: Access

3: Authenticate

4: Impersonates

Session Fixation

João Paulo Barraca Assessment and Exploration of Vulnerabilities 59

Session Fixation - Scenarios

➢ Pre-Generated SID
▪Attacker obtains SID from server

▪Attacker says: Hey Alice, check this https://server.com?SID=EXISTING_SID

▪ If Alice accesses the URL and logs on

▪The attacker can use the SID to impersonate Alice

Server

3: Access

4: Authenticate

5: Impersonates

Session Fixation

1: Obtains SID

João Paulo Barraca Assessment and Exploration of Vulnerabilities 60

Session Fixation - Scenarios

➢ Cross-Domain Cookie
▪Attacker creates evil.server.com and Alice has account at good.server.com

▪Attacker says: Alice, check this http://evil.server.com and provides a cookie *.server.com

▪ If Alice accesses the URL and logs on (The cookie is provided)

▪The attacker can use the Cookie to impersonate Alice

good.server.com

4: Access – sends cookie

5: Authenticate – cookie is kept

Session Fixation

evil.server.com

5: Impersonates

http://evil.server.com/

