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OWASP A2 – Broken Authentication

➢Application functions related to authentication and session 
management are often implemented incorrectly

➢Allow attackers to compromise passwords, keys, or session 
tokens, or to exploit other implementation flaws

➢Attackers may assume other users’ identities temporarily or 
permanently.
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OWASP A2 – Broken Authentication

➢Prevalence is widespread 
▪due to the operation of most identity and access controls. 

➢Session management is the bedrock of authentication and access 
controls
▪ present in all stateful applications

➢Attackers can detect broken authentication using manual means

➢Attackers can exploit them using automated tools
▪There are extensive password lists and dictionary attack tools
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Changes in the OWASP ranking

➢ Services evolving from monolithic server applications to microservices
▪Proliferation of HTTP and REST to implement APIs

➢Applications are evolving to Progressing Web Applications
▪Single HTML page for entire application
▪Lots of Javascript based logic
▪Resources provided through REST APIs
▪Services exposed to the Internet, used directly by clients

➢ Impact 
▪Logic is moving towards clients 
▪State anchors are kept in the clients
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HTTP Basics
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The Web

Web Server

Database

Browser

Local Storage

Local storage contains user data 
inside and outside the browser

Database frequently is on a 
different host
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The Web

Web Server

Database

Application

Browser

Local Storage

Frequently, the 
web server 
communicates 
internally with 
the application 
server
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The Web

Browser

Web Server

Database

Application

Web Firewall

Local Storage

Sometimes, a 
Web Application 
Firewall (WAF) 
provides 
additional 
security controls
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A Web Request

1. Browser asks DNS for the IP address of server.com

2. Browser connects to TCP port 80/443 of server.com

3. Browser sends a request with:
1. Action: GET, POST, PUT, DELETE
2. URL: http://server.com
3. Headers: language, compression, user-agent…

Web ServerBrowser
HTTP Request

User clicks on a link for 
http://server.com
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Multiple Web Request

➢HTTP is stateless by design

➢HTTP Requests are independent of each other
▪Each triggering an individual action

▪Usually tokens or cookies are included in requests/responses to keep state

Web ServerBrowser

HTTP Requests
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HTTP and HTML

➢HTTP is not related with HTML
▪You can have HTTP without HTML, and vice versa

➢HTTP is a generic transport protocol 
▪Usually operated over TCP on port 80 or 8080

➢HTML is a language used to define the structure of a web page

Web ServerBrowser

HTTP Requests
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HTTP Communication

➢HTTP is a standard Client-Server protocol

1. Client establishes a TCP connection with the server on port 80

2. Client sends a HTTP request over that TCP connection

3. Server replies
▪Sends a response
▪HTTP 1.0: Closes the connection
▪HTTP 1.1/2: May keep it persistent for some time

➢ Server only issues replies to requests. It may never contact clients 
directly
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HTTP Communication

image: https://ruslanspivak.com/
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HTTP Communication

➢Actually… servers can contact clients directly with WebSockets
▪Great for low latency asynchronous communications (e.g. VoIP, telemetry)
▪Nightmare for security!

➢ Client upgrades connection to 
a WebSocket

➢Any participant can send message
▪No polling is required

Usually no log is done
▪Client and server must know the 

message format

image: Microsoft.com
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HTTP Request

$ curl https://elearning.ua.pt  -D - -v 

GET / HTTP/1.1

Host: elearning.ua.pt

User-Agent: curl/7.68.0

Accept: */*

HTTP Request
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HTTP Response

$ curl https://elearning.ua.pt  -D - -v 

HTTP/1.1 200 OK

Date: Thu, 12 Nov 2020 17:01:16 GMT

Server: Apache

Set-Cookie: MoodleSession=qvnej3ar6u28ndar312jhg1veh; path=/

Expires: Mon, 20 Aug 1969 09:23:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Cache-Control: post-check=0, pre-check=0, no-transform

Last-Modified: Thu, 12 Nov 2020 17:01:16 GMT

Accept-Ranges: none

HTTP Response
With server timestamp
Cookie, Cache control
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Anything can be a client

$ echo -ne 'GET / HTTP/1.1\r\nHost: elearning.ua.pt\r\nUser-Agent: Android 

10\r\n\r\n' | ncat --ssl elearning.ua.pt 443

HTTP/1.1 200 OK

Date: Thu, 12 Nov 2020 17:20:12 GMT

Server: Apache

Set-Cookie: MoodleSession=ooma3far88iqh9nvssn598nsuu; path=/

Expires: Mon, 20 Aug 1969 09:23:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Cache-Control: post-check=0, pre-check=0, no-transform

Last-Modified: Thu, 12 Nov 2020 17:20:12 GMT

Accept-Ranges: none
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Anything can be a client

➢ Many programs can communicate with HTTP servers
▪ A socket is all that is required

➢ Even Bash can do it

$ exec 5<>/dev/tcp/193.136.173.58/80
$ echo -e "GET / HTTP/1.1\r\nHost: www.ua.pt\r\n\r\n" >&5
$ cat <&5

HTTP/1.1 301 Moved Permanently
Server: nginx/1.18.0
Date: Thu, 12 Nov 2020 17:26:58 GMT
Content-Type: text/html
Content-Length: 169
Connection: keep-alive
Location: https://www.ua.pt/

Open TCP to 193.136.173.58:80 into FD5
Write to FD 5
Read from FD 5
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Anything can be a client

➢ There is no client-side security model

➢All parts of a request can be crafted
▪HTTP Headers, Methods, URLs
▪POST content can be manipulated freely

➢ Control must reside in the server-side context
▪Remember that developers are pushing content to the client? ☺

➢ There are no input validation processes in the server
▪As long as the HTTP protocol is “generally” observed
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Authentication
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Authentication - Recap

➢Authentication aims to determine the identity of an entity
▪Entity may be user, system, software

➢The basic process relies in the verification of some property of the 
authenticated entity by the authenticator
▪Something that he has

▪Something that he knows

▪Something that he is
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Authentication - Recap

➢What else can be used?
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Authentication - Recap

➢Somewhere where he is (location)

➢Someone that is close by (neighborhood)

➢Something that he has done (past behavior)

➢A combination of several
▪2FA – Two Factor Authentication (e.g. Secret + Cookie)

▪MFA – Multiple Factor Authentication (e.g. Secret + Cookie + Smartphone)
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Base HTTP methods

➢Makes use of the Authorization header
▪Header is passed to applications as well as user

▪May require password to be in clear text

▪Presents no configurable user interface

➢Basic authentication through direct presentation of credentials
▪Authorization: Basic base64(login:password)
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Base HTTP methods

➢Digest authentication
▪Server replies with the authentication arguments in the WWW-Authenticate
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

uri="/dir/index.html",

qop=auth,

nc=00000001,

cnonce="0a4f113b",

response="6629fae49393a05397450978507c4ef1",

opaque="5ccc069c403ebaf9f0171e9517f40e41"
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Authentication Flow state
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Sessions

➢HTTP is stateless and provides no way of keeping state
▪Besides WebSockets in HTML5

➢Most applications over HTTP need state for good purposes
▪User preferences
▪Navigation history
▪Authentication state

➢Some use it for less noble purposes, usually compromising privacy
▪Track users across multiple sites for advertising purposes
▪Profile user behavior
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Flow State keeping mechanisms

➢ Referer header

➢ SESSION_ID, or SID or other custom headers

➢ Cookie

➢ JSON Web Token
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Use of the URL

GET /internal/private.html?pass=secret&sid=234234 HTTP/1.1 
Host: www.company.com

➢ Input encoded as part of the URL as Request Arguments

➢GET request is expected to have side effects
▪Arguments control language, authentication, authorization
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Use of the URL

Should be avoided at all cost to transport state

➢ Arguments are visible in the browser 
▪A use problem if your browser is visible: public presentation, remote lecture, over the 

shoulder eavesdropping

➢ Arguments may be logged by the webserver
▪Enable compromise if logs are accessed by an attacker

➢ SEO is broken: different users will have a different URL for the same resource

➢ Cache may be impacted: unique URLs limit the use of caches
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Use of a POST request

POST /doLogin HTTP/1.1
Host: company.com
Pragma: no-cache
Cache-Control: no-cache
User-Agent: Mozilla/5.0 (Windows 10)
Referer: http://company.com/login
Content-Length: 34

username=john&password=supersecret

➢URL visible on the browser: http://company.com/doLogin
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GET vs POST

➢GET is used to REQUEST information
▪Can be resent by browsers
▪May be logged, cached, bookmarked, kept in the browser history
▪Should not change server-side state (no side-effects)
▪ Frequently it will change state, or create logs

➢POST is used to UPDATE information
▪Will not be cached, bookmarked, kept in browser history
▪May not be logged
▪Is not visible to users
▪Is expected to change server-side state (has side effects)



João Paulo Barraca Assessment and Exploration of Vulnerabilities 33

Referer Header

➢ The Referer request header contains the address of the page making 
the request.

➢ The Referer header allows servers to identify where people are visiting 
them from 
▪may use that data for analytics, logging, or optimized caching
▪Sometimes used for access control

➢ Fully user controllable
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Referer Header

➢ First hit: No Referer

GET https://elearning.ua.pt/ HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Connection: keep-alive

Cookie: _ga_RWZB1HRVYE=GS1.1.1605202432.1.1.1605202861.0; _ga=GA1.1.857190253.1605202434; 

_gid=GA1.2.1334581424.1605202436; _hjTLDTest=1; _hjid=25f0d0c2-0616-4e02-86b2-ba6a336f5a99; 

_hjFirstSeen=1; _hjAbsoluteSessionInProgress=0

Upgrade-Insecure-Requests: 1

Host: elearning.ua.pt
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Referer Header

➢ Subsequent request

GET https://elearning.ua.pt/theme/adaptable/style/print.css HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:82.0) Gecko/20100101 Firefox/82.0
Accept: text/css,*/*;q=0.1
Accept-Language: en-US,en;q=0.5
Connection: keep-alive
Referer: https://elearning.ua.pt/
Cookie: _ga_RWZB1HRVYE=GS1.1.1605202432.1.1.1605202861.0; _ga=GA1.1.857190253.1605202434; 
_gid=GA1.2.1334581424.1605202436; _hjTLDTest=1; _hjid=25f0d0c2-0616-4e02-86b2-ba6a336f5a99; 
_hjFirstSeen=1; _hjAbsoluteSessionInProgress=0; MoodleSession=bcsqms7e7h324mmv1s46favccl
Host: elearning.ua.pt
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Referer Header

GET /internal/private.html HTTP/1.1 
Host: www.company.com
Referer: http://www.company.com/loggedin/ 

➢Expected meaning: User accessing /internal/private.html, 
and came from /loggedin therefore it was authenticated

➢ In reality
▪Referer header MAY be set by the browser
▪Was meant for origin authentication, is used for authorization
▪Falls in the TOCTOU: Time-of-check time-of-use
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SESSION ID

➢A value, set by the server in the HTML/Javascript
▪Kept manually by the HTML/JS logic

▪Browser is unaware of it

➢URLs in the HTML include the SESSION ID
<a href=http://company.com?PHPSESSION=value>resource</a>

➢SESSION ID added to requests
▪Header or explicit argument in GET actions

▪Header or body in POST actions
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Cookies (RFC 6265)

➢ASCII text created by the server and sent to the client
▪HTTP Header - Set-Cookie: VALUE

➢Stored in the clients’ cookie jar
▪A file or simple database

▪The client may freely delete (or edit) cookies

➢Client resends the Cookie header to servers
▪in every request made for which there is a compatible cookie

▪Format is: Cookie: VALUE
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Cookies (RFC 6265)

➢ Server can keep context using the cookie provided
1. Receives a Cookie from the client

1. Cookie can contain the session identifier

2. Fetches context (session)
3. Provides a customized answer

➢ Cookies are used as a token enabling authorization
▪ When set as the result of an authentication process
▪ Allow obtaining the identity associated with the request

➢ Loosing a Cookie opens the door to impersonation
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Cookies (RFC 6265)

➢ Cookie scope and lifetime are set by the server in the client response

Set-Cookie: <nome-cookie>=<valor-cookie> 

Set-Cookie: <nome-cookie>=<valor-cookie>; Expires=<date>

Set-Cookie: <nome-cookie>=<valor-cookie>; Max-Age=<non-zero-digit>

Set-Cookie: <nome-cookie>=<valor-cookie>; Domain=<domain-value>

Set-Cookie: <nome-cookie>=<valor-cookie>; Path=<path-value>

Set-Cookie: <nome-cookie>=<valor-cookie>; Secure

Set-Cookie: <nome-cookie>=<valor-cookie>; HttpOnly

Set-Cookie: <nome-cookie>=<valor-cookie>; SameSite=Strict

Set-Cookie: <nome-cookie>=<valor-cookie>; SameSite=Lax



João Paulo Barraca Assessment and Exploration of Vulnerabilities 41

Cookies (RFC 6265)

➢Client -> Server
No cookie sent

➢Server -> Client

Set-Cookie: MoodleSession=0r6mroovg98o338clahfd177g0; path=/

➢Client -> Server

Cookie: MoodleSession=0r6mroovg98o338clahfd177g0
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JWT - JSON Web Tokens

➢Concatenation of 3 texts
▪ base64(header) + '.' + base64(payload) + '.' + base64(signature)

▪signed with a HMAC or Asymmetric crypto (RSA)

header = { "alg" : "HS256",  "typ" : "JWT" }

payload = {"loggedInAs" : "admin","iat" : 1422779638} 

signature=HMAC-SHA256(secret,base64(header)+'.'+base64(payload))
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JWT - JSON Web Tokens

➢ Provide mechanisms for token refresh, limiting impact due to a lost token

➢ Access Token – JWT Token that authorizes the user – very limited lifespan
▪ Is used in every request and has higher exposition

➢ Refresh Token – Random Token only to refresh Access Token
▪Only used to refresh the Access Token

▪ Longer lifetime

➢ After all tokens expire, the authentication process must be restarted

payload = {"loggedInAs" : "admin","iat" : 1422779638} 
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Exploitation and 
Prevention
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What makes an application vulnerable?

➢Credentials can be guessed or overwritten as a result of weak 
account management functions
▪Default passwords, weak passwords (low entropy), predictable passwords

▪Broken account creation/recovery process

➢Allow brute-force or dictionary attacks (credential stuffing)
▪Test the entire key space by blind variation of characters

▪Test the entire key space by testing all 
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What makes an application vulnerable?

➢Credentials are stored in a vulnerable format
▪Clear text in a database, weak cipher mode, low PBKDF2 rounds

▪Attacker can conduct an offline attack
▪ Offline attacks are dangerous: 

▪ The victim doesn’t know the resources of the attacker

▪ The attack is silent to the victim and can take days-years

➢Credentials are sent over unencrypted connections
▪Or authentication driven tokens (cookies)

➢Recovery or Multi-Factor is broken/missing
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What applications should do

Avoid passwords as much as possible (CWE-309)

➢Passwords are prone to have low entropy, follow patterns
▪If passwords are required, force some entropy (CWE-521)

➢Users frequently reuse credentials among different services

➢Passwords must be stored in the server
▪May also be stored in the client
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What applications should do

Use secure storage (CWE-257)

➢ Do not store passwords in clear, even if the domain is “secure”
▪E.g. database requires authentication to be accessed

➢ Add a computational/storage complexity transformation function (CWE 916)
▪PKBDF2 or scrypt
▪Use a reasonably high number of blocks/Rounds

➢ Direct access to storage may reveal secrets
▪Directly of through key brute force
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What applications should do

Require rotation, but don’t require frequent rotation, except if 
compromises are recorded (CWE-263)

➢ Rotation is important and will impose expiration on secrets (CWE-362)
▪ Stolen/discovered secrets will be rendered useless
▪ Doesn’t depend on users good practices (it’s imposed by system)

➢ Frequent rotation without proper tools will be rendered useless as 
users will create “algorithms”
▪ 01MocKingBird2020, 02MocKingBird2020...
▪ Frequent expiration will impact usability and increase the security burden
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What applications should do

Rate limit authentication functions (CWE-770)

➢ Password stuffing will be dramatically delayed
▪ Even a small delay of hundreds of milliseconds may be useful

➢ Monitoring authentication functions allow detecting attack 
attempts (CWE-307)
▪ Blocking an account after repeated authn failures
▪ Password Spraying may circumvent methods (CAPEC-565)
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What applications should do

Use Multi Factor Authentication (CWE-308)

➢ The attack required to obtain a credential, may not obtain a smartphone, or a 
hardware token
▪ credential: eavesdropping or database
▪ Smartphone: remote compromise or physical steal
▪ Hardware token: physically steal the token

➢ If it is a usability issue, use progressive multi factors
▪ E.g.: Check <secret, cookie and IP network> and a fourth is something changes

➢ Favor multi-factor authentication in recovery processes
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What applications should do

➢ For reference: NIST 800-63B: Authentication Assurance Levels
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Token exploitation

➢ Client may freely manipulate tokens to trigger an attack 
▪Break the authentication process, Enumerate users, Bypass authentication

➢ Cookies
▪ If contain sensitive information (passwords) – CWE-256
▪ If they have low entropy
▪ If they have a structure that is processed in the server

➢ JWT
▪ If server improperly verifies signature and allows the “none” method
▪ Verification method code must enforce the same method used in the signature creation

▪Short secret allows an attacker to forge tokens
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Session Hijacking

➢Web applications use session ids, cookies and tokens as credentials
▪Stealing this credential will result in session hijacking

▪SESSION IDs and tokens reside in RAM

▪Cookies are stored, and present in backups

▪BAD: sometimes use IP Address as SID (CWE-291)

➢Multi-factor authentication may limit exploration
▪Cookie from different IP Address? Invalidate it

▪Cookie from different browser? Invalidate it
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Session Hijacking – Sniffing/Interception

➢Sessions can be stolen from Cookie repository
▪If device is compromised

▪If they do not expire (CWE-613)

➢Browser can be led to provide the Cookie/Token to a malicious 
server
▪Attacker listens for DNS request of http://company.com and provides the 

address of the malicious server

▪MiTM attacks with non secure (no TLS) services

http://company.com/
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Session Hijacking – Brute Force

➢ SIDs and Cookies must have high entropy (CWE-331)
▪Should result from a hash or UUID
▪Caveat: calculating a hash from a timestamp is a bad pattern (CWE-330)
▪ Timestamp is predictable

➢Otherwise attacker may brute force values of active sessions
▪Send multiple requests with varying SID/Cookies until access is granted

➢ Same can be done for username/passwords
▪Passwords are weak links
▪User enumeration will reduce the attack time (CWE-200)
▪Applicable to many CPEs
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Session Fixation

➢SIDs from a non-authentication state must be invalidated before 
authorizing a new session (CWE 384)
▪Alternative is to add a secondary Cookie with a random text

➢Attacker may force a predictable SID and wait for authentication
▪SID will be kept after authentication, granting access to the attacker
▪Hey Alice, check this https://server.com?SID=KNOWN_TO_ATTACKER

➢Detected by observing the Cookie/SID before and after authn
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Session Fixation - Scenarios

➢ Freely controlled SID
▪Attacker says: Hey Alice, check this https://server.com?SID=KNOWN_TO_ATTACKER

▪ If Alice accesses the URL and logs on

▪The attacker can use the SID to impersonate Alice

Server

2: Access

3: Authenticate

4: Impersonates

Session Fixation
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Session Fixation - Scenarios

➢ Pre-Generated SID
▪Attacker obtains SID from server

▪Attacker says: Hey Alice, check this https://server.com?SID=EXISTING_SID

▪ If Alice accesses the URL and logs on

▪The attacker can use the SID to impersonate Alice

Server

3: Access

4: Authenticate

5: Impersonates

Session Fixation

1: Obtains SID
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Session Fixation - Scenarios

➢ Cross-Domain Cookie
▪Attacker creates evil.server.com and Alice has account at good.server.com

▪Attacker says: Alice, check this http://evil.server.com and provides a cookie *.server.com

▪ If Alice accesses the URL and logs on (The cookie is provided)

▪The attacker can use the Cookie to impersonate Alice

good.server.com

4: Access – sends cookie

5: Authenticate – cookie is kept

Session Fixation

evil.server.com

5: Impersonates

http://evil.server.com/

